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IX. Programação Linear Paramétrica 

1. Admita que pretende parametrizar simultaneamente dois coeficientes da função objectivo nas seguintes 
condições: 

• c1: variar no intervalo [ 3 , 11 ] 

• c2: variar no intervalo [ 2 , 6 ] 

• relação linear entre os dois coeficientes 
Apresente  os coeficientes parametrizados. 

2. Considere o modelo de PL: 
Max f(X) = (4 - 10t)x1 +  (8 - 4t)x2 

s.a.      

x1 + x2 ≤ 4 
3x1 + x2 ≤ 3 - t 

 x1 , x2  ≥ 0 
 

Recorra à PL Paramétrica para caracterizar as soluções óptimas no intervalo de t∈ [ 0 , +∞ [ . 

3. Considere o modelo de PL para optimizar a produção de dois bens (A e B) em quantidades x1 e x2: 

Max f(X) = 6x1 +  3x2 

s.a.      

2x1 + 4x2 ≤ 720 horas de trabalho 
4x1 + 4x2 ≤ 880 kg de matéria-prima 
x1   ≤ 160 (produção máxima do bem “A”) 
 x1 , x2  ≥ 0  

 
Calcular e apresentar os cenários de optimalidade variando as horas de trabalho de 240 a 1000. 

4. Considere um problema de produção de que se apresenta o quadro inicial do Simplex. 
A avaliação dos níveis de produção x1, x2 , x3 associados respectivamente aos produtos A, B e C, é feita à luz 

do lucro da venda. As variáveis F1 , F2 , F3 estão associadas às 1ª, 2ª e 3ª restrições técnicas, respectivamente. 

VB x1 x2 x3 F1 F2 F3 VSM 
F1 2 3 4 1 0 0 60 
F2 1 1 1 0 1 0 40 
F3 2 3 0 0 0 1 50 

f(X) -4 -5 -6 0 0 0 0 
 

Estudar a optimalidade da produção considerando a variação do recurso R1(matéria prima) de 40 a 120 

quilogramas. 
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5. Uma empresa tem vindo a optimizar a produção de dois bens (A e B), em quantidades x1 e x2, usando o modelo 

de PL: 
Max f(X) = 8x1 +  24x2 

s.a.      

x1 + 2x2 ≤ 10 horas de trabalho 
2x1 + x2 ≤ 10 relação entre produções 

 x1 , x2  ≥ 0  
 

É possível modificar as margens de lucro por troca de pessoal entre actividades associadas às produções de “A” 
e “B”. Assim, no bem “A” a margem de lucro pode ser aumentada de 8 até 18 u.m. reduzindo a margem de lucro 
do produto “B” de valor igual ao dobro do aumento efectuado em “A”. 
Apresentar os cenários de optimalidade para a variação das margens de lucro indicadas. 

6. Considere um problema de produção de que se apresenta o quadro inicial do Simplex. 
A avaliação dos níveis de produção x1, x2 , x3 associados respectivamente aos produtos A, B e C, é feita à luz 

do lucro da venda. As variáveis F1 , F2 , F3 estão associadas às 1ª, 2ª e 3ª restrições técnicas, respectivamente. 

VB x1 x2 x3 F1 F2 F3 VSM 
F1 1 2 1 1 0 0 40 - λ 
F2 3 0 2 0 1 0 60 + 2λ 
F3 1 4 0 0 0 1 30 - 7λ 

f(X) -3 +  6λ -2 + 2λ -5 - 5λ 0 0 0 0 
 

Recorra à PL Paramétrica para caracterizar as soluções óptimas no intervalo de λ∈ [ 0 , +∞ [ . 
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1. Genericamente um coeficiente “c” parametrizado é da forma geral  “ c = α +  λd  “ que mais não é do que a  

expressão geral da recta  definida por pontos (λ , c), com declive “d” e ordenada na origem igual a “α”: 

 

 
S/ IX-1 

 
 
 

α 

c 

λ 

α +  λd 

 
 
 

Considerando  c1 = λ  (considerados α = 0 e d=1) é necessário definir a expressão de c2 em ordem a “λ”: 

c1 = λ 

3 

 
 11 

λ  
3 11  

c2  = α +  λd    
2 6  

Da figura conclui-se que: 
1

2 2 1 1
2 2 2 21

2 2

2 3 2 3
6 11 6 11

dc para d
c d c

c para d
λ α

α λ λ
λ α α

== = ⎧= +⎧ ⎧
= + ⇒ ⇒ ⇒ = +⎨ ⎨ ⎨= = = + =⎩⎩ ⎩

 

 
Os coeficientes parametrizados são pois: 

  

[ ]

1
1 1

2 2 2

3,11

c
c

λ
λ

λ

=

= +

∈

 

 
c1 = λ 

3 

 
 11 

λ 
3 

 
11 

c2  = 1/2 + 1/2(λ)   

2 

 
 

6  
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2. Inicia-se o cálculo considerando t = 0 (extremo inferior do intervalo para estudo). 
Vamos exemplificar em detalhe a análise do quadro Simplex Inicial: 

VB x1 x2 F1 F2 VSM 
F1 1 1 1 0 4 
F2 2 1 0 1 3 - t 

f(X,t) -4 + 10t -8+ 4t 0 0 0 
 
Considerando t = 0 o quadro inicial é: 

VB x1 x2 F1 F2 VSM 
F1 1 1 1 0 4 
F2 2 1 0 1 3  

f(X,t) - 4  - 8 0 0 0 
 
A decisão será a mudança de base (entra x2 por troca com F2 ). 

A informação necessária vai ser registada numa coluna de Observações por forma a que os termos em ordem a 
“t” sejam calculados para cada uma das bases. 
 

VB x1 x2 F1 F2 VSM Obs.  
F1 1 1 1 0 4 
F2 2 1 0 1 3 - t 

f(X,t) -4+ 10t -8+ 4t 0 0 0 

t = 0 
3 - t = 3 ; -4 + 10t = -4 ; -8+ 4t= -8 
Entra x2 . Sai F2 

x2 2 1 0 1 3 - t 
F1 -1 0 1 -1 1 + t 

f(X,t) 12+ 2t 0 0 8 - 4t 4t2 - 20t + 24 

3 – t = 3 ; 1+ t = 1 ; 12 +2t = 12; 
8 – 4t = 8 

1ª Solução óptima 
 
 

1

2* * 2
1 1

1

2

0
3

; ( ) 4 20 24
1

0

x
x t

X f X t
F t
F

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = = − +
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

t  

Qual o limite superior de “t” que mantém a optimalidade desta base ? 
As condições a observar para que a base mantenha a optimalidade permitem calcular aquele limite superior: 

  

3 0 3
1 0 1

2
12 2 0 6
8 4 0 2

t t
t t

t
t t

t t

− ≥ ≤⎧ ⎧
⎪ ⎪+ ≥ ≥ −⎪ ⎪ ⇒ ≤⎨ ⎨+ ≥ ≥ −⎪ ⎪
⎪ ⎪− ≥ ≤⎩ ⎩

Conclusão: Para valores até  “t = 2” esta base mantém-se óptima. 
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Analisando as condições impostas, verifica-se que só os termos em que “t” tem coeficiente negativo é que 
estabelecem limite superior para “t” pelo que bastaria ter feito: 

  
3 0 3

2
8 4 0 2

t t
t

t t
− ≥ ≤⎧ ⎧

⇒ ≤⎨ ⎨− ≥ ≤⎩ ⎩

para concluir que a base corrente permanece óptima até t = 2, ou seja: 

[ ]
1

2* * 2
1 1

1

2

0
3

; ( ) 4 20 24 ; 0,2
1

0

x
x t

X f X t t
F t
F

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = = − + ∈
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

t  

Qual é a utilidade desta conclusão? 
Conhecendo o sub intervalo de “t” onde a base corrente é óptima se necessitar saber qual é a solução óptima 
para qualquer valor de “t” no sub intervalo a resposta é imediata. Por exemplo para t=1 temos: 

1

2* *

1

2

0 0
3 2

; ( , 1) 4 20 24 8
1 2

0 0

x
x t

X f X t
F t
F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = − + =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Retome-se o cálculo em curso pois ainda não está percorrido o intervalo proposto para “t”. 
Sabendo que o limite superior “t = 2” foi obtido com 8 – 4t ≥ 0, este termo tem valor negativo para “t  > 2” ou 
seja, a base corrente deixa de ser óptima pois F2 fica com coeficiente negativo na equação de f(X). 

Mudança de base: Entra F2 ; Sai x2 

 
VB x1 x2 F1 F2 VSM Obs.  
F2 2 1 0 1 3 - t 
F1 1 1 1 0 4 

f(X) -4+ 10t -8+ 4t 0 0 0 

t = 2 (limite inferior corrente) 
3 -  t = 1 ; -4 + 10t = 16 ; -8 +  4t = 0 

2ª Solução óptima 
 

Qual o intervalo de “t” onde se mantém a optimalidade desta base ? 
Recorrendo apenas aos termos onde “t” tem coeficiente negativo temos para limite superior de”t”: 

  {3 0t t− ≥ ⇒ ≤ 3

t

Conclusão: Para valores de “t” entre “2” e “3” (ambos inclusive) a solução óptima é: 

  [ ]
1

2* *
2 2

1

2

0
0

; ( ) 0 ; 2,3
3

4

x
x

X f X
F t
F

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = ∈
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

Avançando no intervalo de “t” vemos que para “t  > 3” o termo “3 – t”  tem valor negativo e a base corrente deixa 
de ser óptima. 
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Para efectuar mudança de base é necessário recorrer ao método Dual-Simplex. 
Sai da base a variável F2 (fica com valor negativo) mas não há limite superior para a nova VB (não há ratio 

admissível no problema Dual). Assim sendo conclui-se que o Dual é Ilimitado pelo que o problema Primal é 
Vazio para “t > 3” pelo que está concluído o estudo. 
De facto para “t = 4” , por exemplo, o modelo fica: 

Max f(X) = - 36x1 - 8x2 

s.a.      

x1 + x2 ≤ 4  
3x1 + x2 ≤ -1 (conjunto vazio) 

 x1 , x2  ≥ 0  
 

Relatório do Estudo feito: 

t x1 x2 F1 F2 f(X) 
[ 0 , 2 ] 0 3 - t 1 + t 0 4t2 - 20t + 24 
[ 2 , 3 ] 0 0 3 - t 4 0 

> 3 Não há solução  
 

3. É necessário parametrizar o termo independente da 1ª restrição técnica (b1): 

Vamos considerar b1 = α+ dλ em que “α” e “d” são constantes. 

Considerando α = 720 e d = 4 fica b1 = 720 +  4λ que é equação da recta de b1(λ). 

Para variar b1 de 240 a 1000 horas é necessário variar “λ” no seguinte intervalo: 

[ ]1

1

720 4 240 120
120,70

720 4 1000 70
b
b

λ λ
λ

λ λ
= + = ⇒ = −⎧

⇒ ∈ −⎨ = + = ⇒ = +⎩
 

O modelo de PL parametrizado é então: 
Max f(X) = 6x1 +  3x2 

s.a.      

2x1 + 4x2 ≤ 720 + 4λ 
4x1 + 4x2 ≤ 880 
x1   ≤ 160  

 
x1 , x2  ≥ 0 

λ∈ [ -120 ,  70 ] 
 

 
Tenha-se em atenção que ao percorrer o intervalo de “b1” se surgirem situações de inadmissibilidade será 

necessário recorrer ao método Dual-Simplex. 
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VB x1 x2 F1 F2 F3 VSM Obs.  
F1 2 4 1 0 0 720 + 4λ 
F2 4 4 0 1 0 880 
F3 1 0 0 0 1 160 

f(X) -6 -3 0 0 0 0 

λ = -120 (limite inferior corrente) 
720 + 4λ = 140 > 0 

 
Entra x1 . Sai F1 

x1 1 2 1/2 0 0 360 + 2λ 
F2 0 -4 -2 1 0 -560 - 8λ 
F3 0 -2 -1/2 0 1 -200 - 2λ 

f(X) 0 9 3 0 0 2160 + 12λ 

360 + 2λ = 120 > 0 
-560 - 8λ = 400 > 0 
-200 - 2λ = 40 > 0 
1ª Solução Óptima 

 

A admissibilidade desta solução mantém-se desde que se verifiquem as condições seguintes: 

  
560 8 0 70

100
200 2 0 100

λ λ
λ

λ λ
− − ≥ ≤ −⎧ ⎧

⇒ ≤ −⎨ ⎨− − ≥ ≤ −⎩ ⎩

Conclusão: 

A 1ª solução óptima mantém-se para “λ” no intervalo [ -120 , -100 ]. 

Para “λ” superior a “-100” o 2º membro “-200 - 2λ” fica negativo e a solução deixa de ser admissível para o 

problema Primal mantendo-se admissível para o problema Dual. 
Aplicando o método Dual-Simplex para mudar de base ( sai F3 ; entra x2) temos: 

VB x1 x2 F1 F2 F3 VSM Obs.  

x2 0 1 1/4 0 -1/2 100 +  λ 

x1 1 0 0 0 1 160 

F2 0 0 -1 1 -2 -160 - 4λ 

f(X) 0 0 3/4 0 9/2 1260+ 3λ 

λ = -100 (limite inferior corrente) 
100+ λ = 0 

-160 - 4λ = 240 > 0 
2ª Solução Óptima 

Mantém-se até λ = -40 
Para λ > - 40: 

Sai F2 ; Entra F1 

F1 0 0 1 -1 2 160 +  4λ 

x2 0 1 0 1/4 -1 60 

x1 1 0 0 0 1 160 

f(X) 0 0 0 3/4 3 1140 

λ = -40 (limite inferior corrente) 
160+ 4λ = 0 

3ª Solução Óptima 
Mantém-se até λ ≤ + ¶ 

 
 

Estudo terminado 
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Soluções Óptimas 

x1 = 360 + 2 λ ; x2 = 0 x1 = 160 ; x2 = 100 + λ x1 = 160 ; x2 =60 

f(X) =1140 f(X) = 2160 + 12λ f(X) = 1260 + 3λ 

 λ 
-120 -100 -40 70 

b

 
 
 

 = 720 +  4λ  1
240 320 560 1000  

 
Na figura seguinte apresenta-se o gráfico com o andamento da produção e do lucro: 
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 Produção de “A” 
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Produção de “B” 

b1

f(X) 

760 

840 

920 

1000 

1080 

800 

960 

1120 
1140 

1040 

880 

240 300 420 540 660 780 900 720 1000480 720 960600 840 360 b1

λ
-120 -100 -40 70
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Nas figuras seguintes veja a geometria do modelo nos limites dos sub intervalos calculados: 

Óptimo 
f(X) = 720 

  

Óptimo 
f(X) = 960 

 

Óptimo 
f(X) = 1140 

 
 

Óptimo 
f(X) = 1140 
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4. É necessário parametrizar o termo independente da 1ª restrição técnicas (b1): 

Vamos considerar b1 = α+ dλ em que “α” e “d” são constantes. 

Considerando α = 60 e d = 1 fica b1 = 60 +  λ. 

Para variar b1 de 40 a 120 kg é necessário variar “λ” no seguinte intervalo: 

[ ]1

1

60 40 20
20,60

60 120 60
b
b

λ λ
λ

λ λ
= + = ⇒ = −⎧

⇒ ∈ −⎨ = + = ⇒ =⎩
 

O quadro inicial do Simplex com o valor de R1 parametrizado é o seguinte: 

x1 x2 x3 F1 F2 F3 
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VB VSM 
F1 2 3 4 1 0 0 60 + λ 
F2 1 1 1 0 1 0 40 
F3 2 3 0 0 0 1 50 

f(X) -4 -5 -6 0 0 0 0 
 

Cálculo das soluções óptimas, variando “λ” no intervalo [ -20 , 60 ] : 

x1 x2 x3 F1 F2 F3  VB VSM Observações 
F1 2 3 4 1 0 0 60 + λ λ = -20 
F2 1 1 1 0 1 0 40 60 + λ = 40 > 0 

F3 2 3 0 0 0 1 50 Entra x3 
Sai F1 f(X) -4 -5 -6 0 0 0 0 

x3 1/2 3/4 1 1/4 0 0 15 + λ/4 15 + λ/4 = 10 
F2 1/2 1/4 0 -1/4 1 0 25 - λ/4 25 - λ/4 = 30 
F3 2 3 0 0 0 1 50 Entra x1 

Sai x3 f(X) -1 -1/2 0 3/2 0 0 90 + 3/2 (λ) 

x1 1 3/2 2 1/2 0 0 30 + λ/2 30 + λ/2 = 20 > 0 

F2 0 -1/2 -1 -1/2 1 0 10 - λ/2 
10 - λ/2 = 20 > 0 
-10 - λ = 10 > 0 

F3 0 0 -4 -1 0 1 -10 - λ 
1ª Solução Óptima 

Mantém-se até λ = -10 
Para λ > -10: 

f(X) 0 1 2 2 0 0 120 + 2λ Sai F3 ; Entra x3 

x3 0 0 1 1/4 0 -1/4 5/2 + λ/4 λ = -10 

x1 1 3/2 0 0 0 1/2 25 
5/2 + λ/4 = 0 

25/2 - λ/4 = 15 > 0 

F2 0 -1/2 0 -1/4 1 -1/4 25/2 - λ/4 
2ª Solução Óptima 

Mantém-se até λ = 50 
Para λ > 50: 

f(X) 0 1 0 3/2 0 1/2 115 + 3/2(λ) Sai F2 ; Entra F3 

 



Cap. IX – Programação Paramétrica - Soluções dos Exercícios 
 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 

 

x1 x2 x3 F1 F2 F3 
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VB VSM Observações 

F3 0 2 0 1 -4 0 -50 + λ λ = 50 

x3 0 1/2 1 1/2 -1 0 -10 + λ/2 
-50 + λ = 0 

-10 + λ/2 = 15 > 0 

x1 1 1/2 0 -1/2 2 1 50 - λ/2 
50 - λ/2 = 25 > 0 

3ª Solução Óptima 
Mantém-se até λ = 100 

f(X) 0 0 0 1 2 0 140 + λ Estudo terminado 
 

Soluções Óptimas 

x1 = 30+ λ/2; x1 = 25 ; x3 = 5/2+ λ/4; x1 = 50 - λ/2 ; x3 = -10 + λ/2; 
 x2 = x3 = 0 x2 = 0 x2 = 0 

f(X) = 120 + 2λ f(X) = 115 + 3/2(λ) f(X) = 140 + λ 

 λ 
-20 -10 50 

b

 
60  

 
 = 60 +  λ  1

40 50 110 120  
 

Na figura seguinte apresenta-se o gráfico com o andamento da produção e do lucro: 
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5. Trata-se de uma situação que exige a parametrização das margens de lucro dos dois bens. 

Usando a variável “λ” e considerando “c1” e “c2” as margens de lucro unitário de “A” e “B” respectivamente, 

consideremos: 
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c1 = 8 + λ 

8 18

 

 
λ 

0 10 
c2  = ? 

24 
 
 4 

Tendo decidido c1 = 8 + λ, é necessário parametrizar c2. 

Sendo c2 = α+ λd, a equação da recta que passa pelos pontos (λ = 0 , c2 = 24) e   (λ = 10 , c2 = 4) é a seguinte: 

  2

(0) 24 24
24 2

10 4 2
d

c
d d

α α
λ

α
+ = =⎧ ⎧

⇒ = −⎨ ⎨+ = = −⎩ ⎩
 

O modelo parametrizado para estudo é então: 

Max f(X) = (8 + λ)x1 +  (24 - 2λ)x2 

s.a.      

x1 2x2 + 10  (horas de trabalho) ≤ 
2x1 x2 + 10   (relação entre produções) ≤ 

x1 , x2  ≥ 0   
 
Vamos usar o método Simplex para calcular os sub intervalos de optimalidade tendo em atenção que estando 
apenas  parametrizados coeficientes de f(X) só será necessário recorrer ao Primal-Simplex. 
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x1 x2 F1 F2 
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VB VSM Obs.  

F1 1 2 1 0 10 λ = 0 (limite inferior corrente) 
-8 - λ  = -8 < 0 F2 2 1 0 1 10 -24 + 2λ = -24 <0 

Entra x2 . Sai F1 f(X) 0 0 0 -8 - λ -24 + 2λ 

x2 1/2 1 1/2 0 5 4 - 2λ = 4 > 0 
12 - λ = 12 > 0 

F2 3/2 0 -1/2 1 5 1ª Solução Óptima 
Mantém-se até λ = 2 

f(X) 4 - 2λ 0 12 - λ 0 120 - 10λ Para λ > 2: Entra x1 ; Sai F2   

x1 1 0 -1/3 2/3 10/3 
λ = 2 (limite inferior corrente) 

40/3 -  5/3(λ) = 10 > 0 
-8/3 + 4/3(λ)= 0 

x2 0 1 2/3 -1/3 10/3 2ª Solução Óptima 
Mantém-se até λ = 8 

f(X) 0 0 40/3 -  5/3(λ) -8/3 + 4/3(λ) 320/3 - 10/3(λ) Para λ > 8: Entra F1 ; Sai x2   
 

F1 1 3/2 1 -1/2 5 λ = 8 (limite inferior corrente) 
-20 + 5/2(λ)  = 0 

x1 0 1/2 0 1/2 5 4 + λ/2 = 8 > 0 
3ª Solução Óptima 

Mantém-se até λ = +¶ f(X) 0 0 -20 + 5/2(λ) 4 + λ/2 40 + 5λ 
Estudo terminado 

 

Soluções Óptimas 

x1 = 0 ; x2 = 5 x1 = 10/3 ; x2 = 10/3 x1 = 5 ; x2 = 0 

f(X) = 120 - 10λ f(X) = (320 - 10λ)/3 f(X) = 40 +  5λ 

 λ 
0 2 8 10 

c1 = 8 +  λ 
8 10 16 18 

c1 = 24 - 2λ 
24 20 8 4 
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Na figura seguinte estão graficadas as conclusões do estudo: 
Unidades

0
1
2
3
4
5
6

0 2 4 6 8 10

120
100 9080

0

50

100

150

200

0 2 4 6 8 10

"A"

 "B"

Lucro

λ

c1 = 8 + λ
8 10 16 18

c2 = 24 - 2λ 
24 20 8 4  

 
Foram identificados 3 cenários: 
Cenário nº 1 
Margem de lucro unitário do produto “A” : 8 até 10 u.m. 
Margem de lucro unitário do produto “B” : 24 até 20 u.m. 
A produção de “A” aumenta de 0 a 3.33 unidades e a de “B” decresce de 5 para 3.33 unidades 
O lucro total decresce de 120 até 100 u.m. 
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Cenário nº 2 
Margem de lucro unitário do produto “A” : 10 até 16 u.m. 
Margem de lucro unitário do produto “B” : 20 até 8 u.m. 
A produção de “A” aumenta de 3.33 a 5 unidades e a de “B” decresce de 3.33 ara 0 unidades 
O lucro total decresce de 100 até 80 u.m. 

                        
Cenário nº 3 
Margem de lucro unitário do produto “A” : 16  a18 u.m. 
Margem de lucro unitário do produto “B” : 8  a 4 u.m. 
As produções de “A” e “B” mantêm-se em 5 e 0 unidades respectivamente. 
O lucro total aumenta de 80 até 90 u.m. 

                          
 
Veja-se a rotação do gradiente de f(X) e consequente rotação da recta de isolucro máximo. 
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6.  

VB x1 x2 x3 F1 F2 F3 VSM Observações 
F1 1 2 1 1 0 0 40 - λ 
F2 3 0 2 0 1 0 60 + 2λ 
F3 1 4 0 0 0 1 30 - 7λ 

f(X) 
-3  

+ 6λ 
-2  

+ 2λ 
-5  

- 5λ 
0 0 0 0 

λ = 0 
Entra x3 
Sai F2 

x3 3/2 0 1 0 1/2 0 30 + λ 
F1 -1/2 2 0 1 -1/2 0 10 - 2λ 
F3 1 4 0 0 0 1 30 - 7λ 

f(X) 
9/2 

+ 27/2(λ) 
-2 

+ 2λ 
0 

1 
- λ 

5/2 
+ 5/2(λ) 

0 150 + 155λ 
+ 5λ2 

Entra x2 
Sai F1 

x2 -1/4 1 0 1/2 -1/4 0 5 - λ 

x3 3/2 0 1 0 1/2 0 30 + λ 

F3 2 0 0 -2 1 1 10 – 3λ 

f(X) 
4  

+ 14λ 
0 0 

1 
- λ 

2 
+ 3λ 

0 160 + 143λ 
+ 7λ2 

1ª Solução Óptima 
Mantém-se até λ = 1 

Para λ > 1: 
Entra F1 ; Sai x2 

F1 -1/2 2 0 1 -1/2 0 10 - 2λ 

x3 3/2 0 1 0 1/2 0 30 + λ 

F3 1 4 0 0 0 1 30 - 7λ     

f(X) 
9/2 

+ 27/2(λ) 
-2 

- 2λ 
0 0 

5/2 
+ 5/2(λ) 

0 150 + 155λ 
+ 5λ2 

λ = 1 
2ª Solução Óptima 

Mantém-se até λ = 30/7 
Para λ > 30/7: 

Não há soluções 
(solução Ilimitada do 
problema Dual) 

 
 

Soluções Óptimas 
 

 0 ≤ λ ≤ 1 1 ≤ λ ≤ 30/7 λ > 30/7 

x1 0  0 

x2 5 - λ 0 

x3 30 + λ 30 + λ 

f(X) 7λ2  + 143λ + 160  5λ2 +  155λ +  155 

Não há soluções 
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