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IV. Modelo Problema Dual 

1. Apresente o modelo Dual do seguinte problema Primal: 
Min  f(X)   =  x1 +  2x2   

s.a.      

3x1 + 4x2 ≤ 10 
      x1 , x2 ≥ 0 

2. Apresente o modelo Dual do seguinte problema Primal: 
Max  f(X)   =  x1 +  2x2  

s.a.      

2x1 - 3x2 ≤ 7 
x1 + 2x2 ≤ 10 

     x1 , x2  ≥ 0 

3. Apresente o modelo Dual do seguinte problema Primal: 
Min  f(X)   =  5 x1 +  4x2   

s.a.      

6x1 + 3x2 ≥ 18 
2x1 + 4x2 ≥ 12 
2x1 + 8x2 ≥ 16 

      x1 , x2  ≥  0 

4. Apresente o modelo Dual do seguinte problema Primal: 
Min  f(X)   =  2x1 +  3x2 +  5x3   

s.a.      

3x1 + 2x2 + 5x3 ≥ 7 
2x1   + x3 ≥ 5 

  4x2 + 3x3 ≥ 8 
      x1 , x2 , x3  ≥ 0 

5. Apresente o modelo Dual do seguinte problema Primal: 
Max  f(X)   =  x1 - 3x2 +  5x3 - x4 

s.a.      

3x1 + 2x2 - 4x3 - 2x4 ≥ 12 
 - x2   + 4x4 = 10 

2x1 + x2 - 3x3   ≤ 15 
      x1 livre ;  x2 , x3 , x4  ≥ 0 
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6. Considere o seguinte problema de PL: 
Max  f(X)   =  6x1 +  3x2 

s.a.      

3x1 + 5x2 ≤ 30 
4x1 + 2x2 ≤ 20 

       x1 , x2  ≥  0 
a. Apresentar o modelo Dual. 

b. Sabendo que a base óptima do problema Primal é x1 = 5 e F1 = 15, calcular a solução óptima do problema 

Dual recorrendo exclusivamente às relações de complementaridade Primal-Dual. 

7. Considere o seguinte problema de PL : 

Min  f(X)   =  1/2  x1 +  3/2 x2   

s.a.      

5x1 + 4x2 ≥ 600 
2x1 + 4x2 ≥ 2400 
8x1   ≥ 600 

       x1 , x2   ≥  0 
 

a. Apresentar o problema Dual. 

b. Calcular as soluções óptimas dos problemas Primal e Dual. 

c. Associar as duas soluções e verificar as relações de complementaridade Primal-Dual. 

8. Considere o seguinte problema de PL: 
Max  f(X)   =  x1 +  3x2   

s.a.      

4x1 + 2x2 ≤ 10 
x1 + x2 ≥ 2 

     x1  ≥ 0 , x2  ≤ 0 
 

a. Apresentar o problema Dual. 

b. Calcular a solução óptima do problema Primal. 

c. Identificar no quadro-óptimo do problema Primal a solução óptima do problema Dual. 
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9. O modelo seguinte tem solução Ilimitada: 
Max  f(X)   =  2x1 + x2   

s.a.      

  x2 ≤ 5 
-x1 + x2 ≤ 1 

      x1 , x2  ≥ 0 
 

a.  Verificar  que o Problema Dual não tem solução (conjunto de soluções vazio). 

10. O modelo seguinte não tem soluções (conjunto de soluções vazio): 
Max  f(X)   =  3x1 +  5x2   

s.a.      

4x1 + 4x2 ≤ 20 
7x1 + 3x2 ≤ 21 
x1   ≥ 5 

     x1 ,  x2   ≥  0 
 

a.  Verificar  se o problema Dual não tem soluções ou  tem solução Ilimitada. 

11. O modelo seguinte não tem soluções (conjunto de soluções vazio): 
Max  f(X)   =  x1 +  3x2   

s.a.      

x1 - x2 ≥ 1 
3x1 - x2 ≤ -3 

x1  ;  x2   ≥  0 
 

a.  Verificar se o problema Dual tem solução ilimitada  ou não tem soluções (conjunto de soluções vazio). 

12. Considere o seguinte problema de PL : 
Max  f(X)   =  x1 +  2x2   

s.a.      

2x1 - 3x2 ≤ 7 
x1 + 2x2 ≤ 10 

     x1  ;  x2   ≥  0 
 

a. Calcular o valor óptimo das variáveis dos problemas Primal e Dual. 
b.  Verificar as relações de complementaridade Primal-Dual. 
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13. Considere o seguinte problema de PL: 
Min  f(X)   =  5x1 +  4x2   

s.a.      

6x1 + 3x2 ≥ 18 
2x1 + 4x2 ≥ 12 
2x1 + 8x2 ≥ 16 

      x1  ,  x2   ≥  0 
 

a. Calcular o valor óptimo das variáveis dos problemas Primal e Dual. 

b. Verificar as relações de complementaridade Primal-Dual. 

14. Considere o seguinte problema de PL : 
Max  f(X)   =  x1 +  x2   

s.a.      

-2x1 + x2 ≤ 2 
x1 - 2x2 ≤ 2 

     x1  ,  x2   ≥  0 
 

a. Calcular as soluções óptimas dos problemas Primal e Dual 

15. Considere o seguinte problema de PL : 
Max  f(X)   =  2x1 +  x2   

s.a.      

x1 + x2 ≥ 4 
x1 + x2 ≤ 3 

     x1  ,  x2   ≥  0 
 

a. Calcular as soluções óptimas dos problemas Primal e Dual 

16. Considere o seguinte problema de PL : 
Max  f(X)   =  x1 +  x2   

s.a.      

x1 - x2 ≥ 0 
x1 - x2 ≤ -1 

     x1 ,  x2   ≥  0 
 

a. Calcular as soluções óptimas dos problemas Primal e Dual 
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17. Definir cada uma das designações seguintes: 

a. Variável Artificial 

b. Solução Básica Admissível (SBA) 

c. Variáveis de Decisão 

d. Valor de uma variável de decisão do problema Dual 

e. Restrição Não Saturada 

f. Função - Objectivo 

g. Solução Óptima Admissível 

h. Preço-sombra 

i. Método Simplex 

j. Variável de Folga 

k. Forma-padrão 

l. Variável Excedentária 

m. Variáveis Básicas 
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As questões seguintes são todas do tipo Verdadeira/Falsa 

18. Se o problema Primal Minimiza f(X), o problema Dual Maximiza g(Y). 

19. A função objectivo do problema Primal deve ser sempre do tipo MAX.  

20. Se uma restrição técnica do problema Primal não carece de variável de  folga ou excedentária, para satisfazer a  
forma-padrão Simplex, a variável Dual associada é “Livre”. 

21. Se uma restrição técnica do problema Primal carece de uma variável de  folga, para satisfazer a  forma-padrão 
Simplex, a variável Dual associada será não negativa se o problema Primal Maximiza f(X) e não positiva se o 
problema Primal Minimiza f(X). 

22. Se uma restrição técnica do problema Primal carece de uma variável excedentária, para satisfazer a  forma-
padrão Simplex, a variável Dual associada será “Livre” quer no problema Primal se maximize ou minimize f(X). 

23. Se no problema Primal há uma variável de decisão “Livre”, a restrição técnica associada do problema Dual é 
uma equação. 

24. O Dual do problema Dual é o problema Primal.  

25. As restrições Duais, associadas a variáveis artificiais do problema Primal, são redundantes.  

26. A solução óptima do problema Primal (problema Dual) pode ser obtida por simples consulta do quadro óptimo do 
problema Dual (problema Primal). 

27. Se o número de variáveis do problema Primal é muito menor do que o número de restrições, é mais rápido 
calcular a solução óptima resolvendo o problema Dual.  

28. Conhecidas duas soluções admissíveis e não óptimas, sendo uma do problema Primal e outra do problema 
Dual, o valor da  função objectivo do problema Primal nunca excede o valor da  função objectivo do problema 
Dual, independentemente de qual dos problemas é de Maximização ou Minimização.  

29. A igualdade dos valores das  funções-objectivo dos problemas Primal e Dual é a ÚNICA condição necessária 
para provar a optimalidade dos valores das variáveis dos dois problemas. 

30. O quadro Simplex para uma dada base pode ser inteiramente calculado desde que conhecido o modelo de PL 
associado.  

31. A alteração do vector-coluna dos recursos, pode afectar a regra de paragem no quadro óptimo do problema 
Dual. 

32. A alteração do vector-coluna dos recursos, apenas pode afectar a admissibilidade da solução do problema Dual. 

33. A alteração de qualquer coeficiente do modelo de PL (excepto vector-recursos) só pode afectar a regra de 
paragem do método Simplex.  
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34. Se uma variável é VNB da solução óptima, a alteração do seu coeficiente original em  f(X) pode provocar a 
alteração da admissibilidade do valor da variável Dual associada. 

35. Se uma variável é VB da solução óptima, o valor da variável Dual complementar é zero. 

36. Usando o método Simplex, enquanto não for atingido o óptimo do problema Primal , a solução do problema Dual 
não é admissível. 

37. Se o problema Primal tem solução Ilimitada, o conjunto das soluções admissíveis do problema Dual é vazio. 

38. Se o problema Primal é Impossível, o problema Dual tem sempre solução Ilimitada.  

39. Admitindo que o valor máximo de f(X) corresponde a lucro, este deve ser igual ao valor interno dos recursos 
utilizados. 

40. Sempre que uma dada actividade tem um custo interno superior ao respectivo lucro marginal, a variável de 
decisão associada tem valor óptimo nulo.  

41. Considere o modelo de PL (input do software do autor): 

 
Usando o método Simplex obtém-se o seguinte quadro óptimo: 

 
Solução óptima do Dual: 

y1 = 0 ; y2 = 1/2 ; y3 = -5 ; y4 = -13/2 

Max g(Y*) = 10 
 
 
 
 

 
IV-7



Cap. IV - Modelo Dual  - Soluções dos exercícios 
 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

S/ IV-1

 
 
 
 

 
 
 
 
 
 

INVESTIGAÇÃO OPERACIONAL 
 
 
 
 
 
 
 
 
 
 
 
 

Programação Linear 
 

Soluções dos Exercícios 
 
 
 
 

Cap. IV – Modelo Dual 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

António Carlos Morais da Silva  
        Professor de I.O.  



Cap. IV - Modelo Dual  - Soluções dos exercícios 
 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

S/ IV-2

1. Max g(Y)  = 10y1 

s.a. 3y1 ≤ 1 
 4y1 ≤ 2 
 y1 ≤ 0 

 

2. Min g(Y)  =  7y1 + 10y2 

s.a. 2y1 + y2 ≥ 1 
 -3y1 + 2y2 ≥ 2 
         y1 ,y2 ≥ 0 

 

3. Max g(Y)  =  18y1 + 12y2 + 16y3 

s.a. 6y1 + 2y2 + 2y3 ≤ 5 
 3y1 + 4y2 + 8y3 ≤ 4 
              y1 , y2 , y3 ≥ 0 

 

4. Max g(Y) = 7y1 + 5y2 + 8y3 

s.a. 3y1 + 2y2   ≤ 2 
 2y1   + 4y3 ≤ 3 
 5y1 + y2 + 3y3 ≤ 5 
   y1 , y2 , y3 ≥ 0 

 

5. Min g(Y)  = 12y1 + 10y2 + 15y3 

s.a. 3y1   + 2y3 = 1 
 2y1 - y2 + y3 ≥ -3 
 -4y1   - 3y3 ≥ 5 
 -2y1 + 4y2   ≥ -1 
   y1 ≤ 0 ; y2  livre ; y3 ≥ 0 

 

6.  

a. Min g(Y)  =  30y1 + 20y2 

s.a. 3y1 + 4y2 ≥ 6 
 5y1 + 2y2 ≥ 3 
         y1 ,y2 ≥ 0 
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b. Com os dados do problema é possível visualizar o seguinte extracto do quadro-óptimo do Problema Primal: 

F2 F1 x1 x2 VB VSM 
x1 1  0  5 
F1 0  1  15 

 f(X)   0  0  30 
 
Conhecendo os valores de y1 = y3 = 0, podem calcular-se os valores de y2 e y4 resolvendo o sistema de 

equações da  forma-padrão do Problema Dual: 

y3 y1 

3y1 4y2 y3 + -   = 6 
5y1 2y2 
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+   - y4 = 3 
 

0 + 4y2 - 0   = 6 
0 + 2y2   - y4 = 3 

 
  y2     = 3/2 

      y4 = 0 
 

Solução óptima do Problema Dual :  

 y1 = 0 ; y2 = 3/2 ; y3 = 0 ; y4 = 0 ; Min g(Y*) = 30 = Max f(X*)  

7.  

a. Max g(Y) = 600y1 + 2400y2 + 600y3 

5y1 2y2 8y3 s.a. + + 1/2 ≤ 
4y1 4y2   +  3/2 ≤ 

        y1 , y2 0 ≥ 
b.   

x1 y1    1200           0  
1/4 x2 y2    0            

E1 y3 X* =   =  5400   Y* =   =  0  Min  f(X*) = 600 
E2 y4      0        0  Max g(Y*) = 600 

1/2 E3 y5    9000            
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c.   

Problema Primal  Problema Dual Complementaridade 

 
x1 = 1200  

(1ª V. Decisão) 
  

y4 = 0 
(1ª V. Auxiliar) 

(1200)(0) = 0 

Variáveis 
Básicas 

E1 = 5400 
(1ª V. Auxiliar) 

 Variáveis  
Não Básicas 

y1 = 0        
(1ª V. Decisão) 

(5400)(0) = 0 

 
E3 = 9000 

(3ª V. Auxiliar) 
  

y3 = 0 
(3ª V. Decisão) 

(9000)(0) = 0 

Variáveis 
Não Básicas 

x2 = 0  

(2ª V. Decisão) 
 Variáveis  

Básicas 
y5 = 1/2 

(2ª V. Auxiliar) 
(0)(1/2) = 0 

 
E2 = 0 

(2ª V. Auxiliar) 
  

y2 = 1/4        
(2ª V. Decisão) 

(0)(1/4) = 0 

 

8.  

a. Min g(Y) = 10y1 + 2y2  

s.a. 4y1 + y2 ≥ 1 
 2y1 + y2 ≤ 3 
     y1 ≥ 0 ; y2  ≤ 0  

 

b. Solução Óptima do problema Primal :  x1 = 5/2 ; x2 = 0 ; F1 = 0 ; E2 = 1/2 ; Max  f(X*) = 5/2 

c. Solução Óptima do problema Dual  :    y1 = 1/4  ; y2 = 0 ; y3 = 0 ; y4 = 5/2 ; Min g(Y*) = 5/2 

9. O modelo Dual é: 
Min g(Y) = 5y1 + y2 

s.a.   -y2 ≥ 2 
 y1 + y2 ≥ 1 
    y1 , y2  ≥  0  

 
Veja-se que a 1ª restrição técnica y2 ≤ -2 é incompatível com a restrição lógica y2 ≥ 0 pelo que o conjunto de 

soluções do problema Dual é vazio. Assim sendo o problema Dual não tem solução admissível. 

10. O modelo Dual é: 
Min g(Y) = 20y1 +  21y2 +  5y3 

s.a. 4y1 + 7y2 + y3 ≥ 3 
 4y1 + 3y2 +  ≥ 5 
     y1  , y2  ≥ 0 ; y3 ≤ 0 
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O 1º quadro Simplex do 2 º Passo é o seguinte: 
 

VB y1 y2 y´3 y4 y5 y1
a y2

a VSM 
y2 4/3 1 0 0 -1/3 0 1/3 5/3 
y´3 16/3 0 1 1 -7/3 -1 7/3 26/3 

g(Y) -56/3 0 0 -5 14/3 5 -14/3 -25/3 
 

Deve entrar para a base a variável y5, mas não há “ratio” finita não negativa pelo que a solução do problema 

Dual é Ilimitada. 

11. Problema Dual tem solução Ilimitada. 

12. a.  b. 

Problema Primal  Problema Dual Complementaridade 
Variáveis 
Básicas 

x2 = 5  
(2ª V. Decisão) 

  
y4 = 0 

(2ª V. Auxiliar) 
(5)(0) = 0 

 
F1 = 22 

(1ª V. Auxiliar) 
 Variáveis  

Não Básicas 
y1 = 0        

(1ª V. Decisão) 
(22)(0) = 0 

Variáveis 
Não Básicas 

x1 = 0  

(1ª V. Decisão) 
 Variáveis  

Básicas 
y3 = 0 

(1ª V. Auxiliar) 
(0)(0) = 0 

 
F2 = 0 

(2ª V. Auxiliar) 
  

y2 = 1        
(2ª V. Decisão) 

(0)(1) = 0 

 

 Max  f(X*) = 10 = Min g(Y*) = 7y1 + 10y2 

13. a. b. 

Problema Primal  Problema Dual Complementaridade 

 
x1 = 2  

(1ª V. Decisão) 
  

y4 = 0 
(1ª V. Auxiliar) 

(2)(0) = 0 

Variáveis 
Básicas 

x2 = 2 
(2ª V. Decisão) 

 Variáveis  
Não Básicas 

y5 = 0        
(2ª V. Auxiliar) 

(2)(0) = 0 

 
E3 = 4 

(3ª V. Auxiliar) 
  

y3 = 0 
(3ª V. Decisão) 

(4)(0) = 0 

Variáveis 
Não Básicas 

E1 = 0  

(1ª V. Auxiliar) 
 Variáveis  

Básicas 
y1 = 2/3 

(1ª V. Decisão) 
(0)(2/3) = 0 

 
E2 = 0 

(2ª V. Auxiliar) 
  

y2 = 1/2        
(2ª V. Decisão) 

(0)(1/2) = 0 

 
 Min  f(X*) = 18 = Max g(Y*) = 18y1 + 12y2 + 16y3  
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14.  

 
Problema Primal : solução ilimitada  

Se o problema Primal tem solução Ilimitada o problema Dual não tem soluções (conjunto de soluções vazio) 

15.  

 
Problema Dual : solução ilimitada  

Se o problema Dual tem solução Ilimitada o problema Primal não tem soluções (conjunto de soluções vazio) 

16.  
Problema Primal:  

As duas restrições técnicas são incompatíveis; o problema não tem soluções (conjunto de soluções vazio) 
Problema Dual:  

Min g(Y) = -y2 

s.a. 

y1 +  y2  ≥  1  

-y1 - y2  ≥  1  ou seja  y1 +  y2  ≤ -1 

y1 ≤ 0 ; y2 ≥ 0 

As duas restrições técnicas são incompatíveis; o problema não tem soluções (conjunto de soluções vazio) 

 
S/ IV-6
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17.  

a. Uma variável Artificial não tem qualquer significado físico, sendo apenas utilizada para construir uma solução 

inicial para aplicação do método Simplex quando o modelo de PL apresenta restrições dos tipos “=“ e “≥“ . 

b. Uma solução básica é a que está associada a um conjunto de vectores independentes do sistema de 
equações que formam uma matriz com determinante diferente de zero. Genericamente, num sistema de “m” 
equações lineares com “n” variáveis com “n > m”,  obtém-se uma solução básica quando “n-m” variáveis 
são consideradas nulas e o sistema é resolvido em ordem a “m” variáveis.  

c. São as variáveis do modelo de PL que o decisor pode controlar. 
Atinge-se uma solução óptima quando são calculados os valores das variáveis de decisão que optimizam o 
valor de uma  função-objectivo. 

d. É o “preço-sombra” ou “valor marginal” de uma unidade do segundo membro da restrição técnica a que 
e associa a variável de decisão do problema Dual. 
Tem sempre valor nulo para recursos associados a restrições não saturadas. 

e. Diz-se “não saturada” a restrição de um modelo de PL que não é satisfeita como igualdade. 

f. É uma  função linear a Maximizar ou Minimizar no modelo de PL. Traduz o critério do decisor para apreciar 
soluções admissíveis. 

g. A solução do modelo de PL que Maximiza (minimiza) a  função-objectivo. 

h. Valor marginal (preço interno) de uma unidade adicional do segundo membro da restrição técnica do 
problema Primal a que está associada a respectiva variável de decisão do problema Dual. 

i. Método algébrico para solucionar problemas de programação linear. 

j. Variável, com domínio não negativo, que é adicionada ao primeiro membro de uma restrição do tipo “≤“ para 

converter a desigualdade numa igualdade. Em regra, o valor da variável de  folga é interpretado como a 
quantidade de recurso que não é utilizado na solução óptima do problema. 

k. Formulação do problema de PL em que : 

• as restrições técnicas são apresentadas como igualdades 

• os segundos membros das restrições têm valor não negativo 

• as variáveis do modelo têm domínio não negativo 

l. Variável, com domínio não negativo, que é subtraída ao primeiro membro de uma restrição do tipo “≥ “ para 

converter a desigualdade numa igualdade. 

m. Variáveis em ordem às quais se resolve um sistema de equações lineares. Genericamente, num sistema de 
“m” equações lineares com “n” variáveis com “n > m”,  obtém-se uma solução básica quando “n-m” 
variáveis são consideradas nulas e o sistema é resolvido em ordem a “m” variáveis. 
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18. Verdadeira. 

19. Falsa. 

20. Verdadeira. Se a restrição não carece de variável de equilíbrio é porque já é uma igualdade a que se associa 
uma variável de decisão Dual, livre ( sem restrição de sinal ). 

21. Verdadeira. Se a restrição carece de variável de folga é do tipo “ ≤ “. 

Se o Primal é maximizante, então a restrição é típica e a variável Dual associada é típica ( y ≥ 0). 

Se o Primal é minimizante, então a restrição é não típica e a variável Dual associada é não típica  ( y ≤ 0). 

22. Falsa. 

23. Verdadeira. 

24. Verdadeira. 

25. Verdadeira. 

26. Verdadeira. 

27. Verdadeira. 

28. Falsa. O problema que minimiza tem sempre a função objectivo com valor majorante  do da função objectivo do 
problema que maximiza. 

29. Falsa.  

30. Verdadeira.   

31. Verdadeira. Se a solução deixa de ser admissível, no problema Dual é afectada a regra de paragem do Simplex. 

32. Falsa. Ver a resposta anterior.   

33. Falsa. 

34. Verdadeira. Pode alterar-se o seu coeficiente na equação de f(X) que é valor de uma variável Dual associada. 
Se dessa alteração resultar a violação da regra de paragem do Simplex então o valor da variável Dual deixa de 
ser admissível. 

35. Verdadeira (relação de complementaridade Primal-Dual). 

36. Verdadeira.   

37. Verdadeira.   
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38. Falsa. 
Veja-se o exemplo seguinte: 

8x1 6x2 Max f = +   
x1 x2 - 3/5 s.a. ≤ 
x1 x2 - 2  ≥ 
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  x1 , x2 0 ≥ 
 

O modelo Dual é: 

Min g(Y) = 3/5 y1 + 2y2   
y1 + y2 8 s.a. ≥ 
-y1 - y2 6  ≥ 

  y1 ≥ 0 ; y2 ≤ 0 
 

Geometricamente pode ver-se que são vazios  os conjuntos-solução do Primal e do Dual. 
No quadro seguinte apresenta-se a relação entre os valores das funções-objectivo dos dois problemas: 
 

39. Verdadeira.   

40. Verdadeira.   

41. Falsa. As variáveis auxiliares são utilizadas na forma-padrão do Simplex no pressuposto que o seu domínio é 
não negativo. 
As variáveis y3 e y4 são variáveis auxiliares do problema Dual pelo que o seu valor é: 

y3 = 5 ; y4 = 13/2 

Não esquecer que em Minimização a regra de paragem do Simplex é: 
“na equação de f(X), todos os coeficientes, das variáveis da forma-padrão, são não positivos” 

pelo que o valor das variáveis auxiliares do Dual é sempre o valor absoluto dos coeficientes das variáveis de 
decisão na equação de f(X). 

 

  Problema Dual : Min g(Y) 
  Possível Impossível 

Possível Max f(X) = Min g(Y) Max f(X)= ilimitado Problema Primal  
Max f(X) Impossível Min g(Y) = ilimitado Primal e Dual sem solução 
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