SISTEMAS DE EQUAÇÕES LINEARES

1. Consideremos o sistema de equções
$$\begin{cases} x_1-x_2+x_3=1\\ 2x_2-x_3=1\\ 2x_1+3x_2=1 \end{cases}$$

1. Consideremos o sistema de equções
$$\begin{cases} x_1-x_2+x_3=1\\ 2x_2-x_3=1\\ 2x_1+3x_2=1 \end{cases}$$
 A matriz dos coeficientes das variáveis nas "m" equações é $A=\begin{bmatrix} 1 & -1 & 1\\ 0 & 2 & -1\\ 2 & 3 & 0 \end{bmatrix}$

A matriz das variáveis é
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

A matriz das "m" constantes do 2°s membros é
$$B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

O sistema escrito na forma matricial é A.X =B

A solução do sistema de equações é $X = A^{-1}$. B, sendo pois necessário inverter a matriz dos coeficientes das variáveis.

Apresenta-se a resolução do sistema de equações pelo método de Gauss-Jordan (utilizado no Simplex de George Dantzig ligado à programação matemática)

Para melhor aprender este método consultar www.moraissilva.pt

- 2. Inversão da matriz "A" pelo método Gauss-Jordan
 - construir quadro com a matriz "A", a matriz identidade "I" da mesma ordem e a matriz dos valores dos segundos membros (VSM)
 - aplicar operações elementares (troca de linhas, multiplicação de uma linha por um escalar não nulo e adição/subtracção de múltiplos de linhas) para transformar "A" na matriz identidade "I". As operações são aplicadas simultaneamente à parte correspondente à matriz "I"
 - quando a matriz "A" é reduzida à matriz identidade, a matriz "I", transformada, é a matriz inversa da matriz
 "A" e a solução dos sistema estará na coluna VSM

Na resolução as linhas numeradas servem apenas para facilitar o acompanhamento do cálculo efectuado

Linha	X 1	X ₂	X 3	i ₁	i ₂	i ₃	VSM	Observações
1	1,	-1	1	1	0	0	1	
2	0 \	2	-1	0	1	0	1	
3	2 \	3	0	0	0	1	1	
	1 \	0	0					No campo da matriz "A" deve ficar a matriz Identidade
	0	1	0					Ordem do cálculo por colunas
	0	\ 0	1					Começar sempre por registar na coluna respectiva o vector da Identidade
	1º passo							COLUNA de x1: transformar o vector-coluna (1, 0, 2) em (1, 0, 0) Calcular a linha 4 para ser PIVOT da transformação linear
4	14	·1	1	1	0	0	1	1º - obter coef =1 para x1 na linha 4. Porque já existe copia-se a linha 1 A linha 4 é PIVOT da transformação linear da 1ª coluna
5	0	2	-1	0	1	0	1	2º - na linha 5 quero (0) no coef de x1. Já existe na linha 2. Copiar a linha 2
6	0	5	-2	-2	0	1	-1	3° - na linha 6 quero (0) no coef de x1 e tenho 2 na linha 3. Multiplico a linha 4, que é Pivot, por (-2) e somo à linha 3
		1	\					Coluna de x1 PRONTA. Manter. Passar para a 2ª coluna
	1º passo							COLUNA de x2: transformar o vector-coluna (-1,2,5) em (0 ,1, 0) Calcular a linha 8 para ser PIVOT da transformação linear
								1º - obter coef=1 para x2 na linha 8 dividindo a linha 5 por (2). A linha 8 é PIVOT da transformação linear da 2ª coluna
7	1	0	1/2	1	1/2	0	1 1/2	2º na linha 7 quero (0) no coef de x2 e tenho (-1) na linha 4. Multiplico a linha PIVOT por (1) e somo à linha 4
8	0	1	- 1/2	0	1/2	0	1/2	3° - na linha 9 quero (0) no coef de x2 e tenho (5) na linha 6. Multiplico a linha PIVOT por (-5) e somo à linha 6.
9	0	0	1/2	-2	-2 1/2	1	-3 1/2	Coluna de x2 PRONTA. Manter. Passar para a 3ª coluna
				1º pa	sso			COLUNA de x3 : transformar o vector-coluna (1/2, -1/2, 1/2) em (0 ,0 , 1) Calcular a linha 12 para ser PIVOT da transformação linear
				_ pa				1º -: obter coef =1 para x3 na linha 12 dividindo a linha 9 por (1/2) A linha 12 é PIVOT da transformação linear da 3ª coluna
10	1	0	0	3	3	-1	5	2º - na linha 10 quero (0) no coef de x3 e tenho (1/2) na linha 7. Multiplico a linha PIVOT por (-1/2) e somo à linha 7.
11	0	1	0	J -2	-2	1	-3 - 7	3° - na linha 11 quero (0) no coef de x3 e tenho (-1/2) na linha 8. Multiplico a linha PIVOT por (1/2) e somo à linha 8.
12	0	0	1	-4	-5	2	-7	Coluna de x3 PRONTA. Solução: x1 = 5; x2 =3; x3 =7

Solução do sistema de equações
$$\begin{cases} x_1 = 5\\ x_2 = -3\\ x_3 = -7 \end{cases}$$

Este resultado tal, como foi dito, resulta de:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A^{-1}.B = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3+3-1 \\ -2-2+1 \\ -4-5+2 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -7 \end{bmatrix}$$

3. Exemplo resolvido do sistema de equações $\begin{cases} x_1 + x_2 + x_3 = 20 \\ 5x_1 + 3x_2 + 2x_3 = 1 \\ x_2 + x_3 = 6 \end{cases}$

x 1	x2	х3				VSM	Observações	Objectivo em cada bloco iterativo
1,	1	1	1	0	0	20		
5	3	2	0	1	0	0		
0	1	1	0	0	1	6		
1 🗲	1	1	1	0	0	20	→ linha pivot da transformação linear	Coluna x1 com vector-coluna [1 0 0]
0	-2 \	-3	-5	1	0	-100		
0	1 \	\ 1	0	0	1	6		
1	0)-0.5	-1.5	0.5	0	-30		Coluna x2 com vector-coluna [0 1 0]
0	1 4	1.5	2.5	-0.5	0	50	→ linha pivot da transformação linear	
0	0	-0.5 \	-2.5	0.5	1	-44		
1	0	0	\ 1	0	-1	14		Coluna x3 com vector-coluna [0 0 1]
0	1	0)-5	1	3	-82		
0	0	1 1	5	-1	-2	88	→ linha pivot da transformação linear	

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A^{-1}.B = \begin{bmatrix} 1 & 0 & -1 \\ -5 & 1 & 3 \\ 5 & -1 & 2 \end{bmatrix} \begin{bmatrix} 20 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 20 - 6 \\ -100 + 18 \\ 100 + 2 \end{bmatrix} = \begin{bmatrix} 14 \\ -82 \\ 88 \end{bmatrix}$$

4. Resolver o sistema de equações $\begin{cases} x_1 + x_2 + x_3 = 5 \\ 5x_1 + 3x_2 + 2x_3 = 9 \end{cases}$

O sistema é Indeterminado ("m" linhas e "n" colunas com "n > m") admitindo, no máximo

 $C_2^3 = soluções com 2 variáveis básicas (VB) e 1 variável não básica (VNB) nula$

Bases-solução:

•
$$A_m.X_m = B \Leftrightarrow \begin{bmatrix} 1 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix} ; .X_m = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A_m^{-1}.B = \begin{bmatrix} \frac{-3}{2} & \frac{1}{2} \\ \frac{5}{2} & \frac{-1}{2} \end{bmatrix} . \begin{bmatrix} 5 \\ 9 \end{bmatrix} = \begin{bmatrix} -3 \\ 8 \end{bmatrix}$$

•
$$A_m.X_m = B \Leftrightarrow \begin{bmatrix} 1 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix} ; .X_m = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = A_m^{-1}.B = \begin{bmatrix} \frac{-2}{3} & \frac{1}{3} \\ \frac{5}{3} & \frac{-1}{3} \end{bmatrix} . \begin{bmatrix} 5 \\ 9 \end{bmatrix} = \begin{bmatrix} \frac{-1}{3} \\ \frac{16}{3} \end{bmatrix}$$

•
$$A_m.X_m = B \Leftrightarrow \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} \frac{x_2}{x_3} \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$
; $X_m = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = A_m^{-1}.B = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix}.\begin{bmatrix} 5 \\ 9 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$

Soluções do sistema:
$$X_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$$
 : $X_2 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 0 \\ \frac{16}{3} \end{bmatrix}$: $X_3 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 6 \end{bmatrix}$

Sendo o sistema de equações Indeterminado as soluções deste são:

$$X = \alpha_1.X_1 + \alpha_2.X_2 + \alpha_3.X_3; \ \alpha_1 + \alpha_2 + \alpha_3 = 1 \ \land \ \alpha_1,\alpha_2,\alpha_3 \ge 0$$

Exemplo com $\alpha_1=0.4, \alpha_2=0.4, \alpha_3=0.2$

$$X = \frac{4}{10} \cdot \begin{bmatrix} -3\\8\\0 \end{bmatrix} + \frac{4}{10} \cdot \begin{bmatrix} \frac{-1}{3}\\0\\\frac{16}{3} \end{bmatrix} + \frac{2}{10} \cdot \begin{bmatrix} 0\\-1\\6 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{-6}{5} \\ \frac{16}{5} \\ \frac{16}{5} \end{bmatrix} + \begin{bmatrix} \frac{-2}{15} \\ \frac{0}{32} \\ \frac{32}{15} \end{bmatrix} + \begin{bmatrix} \frac{0}{-1} \\ \frac{5}{5} \end{bmatrix} = \begin{bmatrix} \frac{-4}{3} \\ \frac{3}{3} \\ \frac{10}{3} \end{bmatrix}$$

Verificação:

$$\begin{cases} x_1 + x_2 + x_3 = 5 \\ 5x_1 + 3x_2 + 2x_3 = 9 \end{cases} \iff \begin{cases} \frac{-4}{3} + 3 + \frac{10}{3} = 5 \\ 5\left(\frac{-4}{3}\right) + 3(3) + 2\left(\frac{10}{3}\right) = 9 \end{cases} \iff \begin{cases} 5 = 5 \\ 9 = 9 \end{cases}$$

Morais Silva

Novembro 2024