MATRIZES

Uma Matriz é uma tabela designada por letra maiúscula com a indicação do número de linhas e colunas.

Exemplo da matriz
$$A_{3\times3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Os elementos da matriz estão referenciados pelos índices de linha e coluna.

A diagonal
$$(a_{11} - a_{33})$$
 é a Principal e a $(a_{31} - a_{13})$ é a Secundária

OPERAÇÕES COM MATRIZES

Várias áreas da matemática, como álgebra linear, geometria e computação gráfica recorrem a matrizes pelo que é necessário saber operar com as mesmas.

1. Adição de Matrizes

Só podem adicionar-se matrizes da mesma ordem (número igual de linhas e colunas).

A adição é feita somando os elementos correspondentes das matrizes:

Exemplo da Soma da matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ com a matriz $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$

$$A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Nota: A Soma de Matrizes é COMUTATIVA ou seja A+B = B+A

2. Subtracção de Matrizes

Tal como a adição também a subtracção exige matrizes da mesma ordem.

A subtracção é feita subtraindo os elementos correspondentes das matrizes:

Exemplo da Subtração da matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ com a matriz $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$

$$A - B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 - 5 & 2 - 6 \\ 3 - 7 & 4 - 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Pode optar-se por somar a matriz simétrica:

$$A - B = A + (-B) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} -5 & -6 \\ -7 & -8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Nota: A Subtracção de Matrizes NÃO É COMUTATIVA.

3. Multiplicação de Matrizes

Só é possível multiplicar $[A_{m \times n}] \times [B_{p \times q}]$

se o número "n" de colunas da matriz A for igual ao número "p" de linhas da matriz B A matriz $C = A \times B$ tem o número de linhas de A e o número de colunas de B

$$[A_{m\times n}]\times [B_{p\times q}]=C_{m\times q}$$

Na matriz $C = A \times B$

cada um dos elementos c_{ij} é a soma dos produtos da linha "i" de A com os da coluna "j" de B Assim, por exemplo, $c_{11}=$ soma dos produtos dos elementos da linha 1 de A com os da coluna 1 de B

 $e\ c_{13} = soma\ dos\ produtos\ dos\ elementos\ da\ linha\ 1\ de\ A\ com\ os\ da\ coluna\ 3\ de\ B$

Exemplo da Multiplicação da matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ com a matriz $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$

$$A \times B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Outro exemplo
$$3 \times 2$$
 2×4 3×4
$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 2 & 2 \\ 1 & -1 & 0 & 1 \\ 3 & 3 & 4 & -1 \end{bmatrix}$$
 Produto possível (2 colunas para 2 linhas...)

Outro exemplo 2 x 4 ------ 3 x 2

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} \qquad \text{Produto impossível (4 colunas para 3 linhas...)}$$

A Multiplicação de Matrizes não é comutativa

4. Multiplicação da matriz por um Escalar

Cada elemento da matriz é multiplicado pelo escalar:

$$Seja\ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\ e\ o\ escalar\ \lambda = 3. \quad O\ produto\ \lambda \times A = 3 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times 2 \\ 3 \times 3 & 3 \times 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$$

5. Matriz Transposta

A transposta da matriz $A \in A^T$ obtida trocando as linhas pelas colunas:

$$Seja\ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\ então\ A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 (1ª linha passa a 1ª coluna; 2ª linha passa a 2ª coluna)

6. Determinante de uma Matriz

O determinante é um valor associado a uma matriz quadrada.

No caso da matriz quadrada de ordem 2 o determinante é igual à diferença entre os produtos dos elementos da diagonal principal e da diagonal secundária.

Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & A \end{bmatrix}$$
 então $\Delta_A = (1 \times 4) - (3 \times 2) = -2$

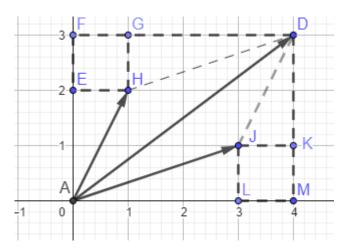
O determinante é importante para calcular a matriz Inversa e ainda para averiguar se esta existe.

Considere – se o sistema de equações $\begin{cases} 2x + y = 10 \\ 4x + 2y = 20 \end{cases}$ onde não há independência linear porque a 2ª equação é múltipla da 1ª, sendo portanto redundante.

O determinante da matriz é nulo: $(2 \times 2) - (4 \times 1) = 0$, dado não haver redundância

Consideremos agora a matriz $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ que tem 2 vectores $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ e $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ e determinante $\Delta = -5$

Graficamente temos:



É evidente que <u>os dois vectores são linearmente independentes</u>. Haverá alguma relação com o determinante da matriz? Calculando áreas temos:

Área AFDM =
$$3 \times 4 = 12$$
 ; Área EFGH = JKLM = 1 ; Área AEH = DJK = 1 ; Área DGH = AJL = 1.5
Área do paralelogramo AHDJ = $12 - 1 - 1 - 1 - 1 - 1.5 - 1.5 = 5$

Verifica-se que a área do paralelogramo é igual ao Valor Absoluto do determinante da matriz

Se há independência linear há paralelogramo (na matriz 2x2) com área sinalizando determinante não nulo

7. Matriz Identidade /

É uma matriz **Quadrada** com todos os elementos da diagonal principal unitários e os restantes nulos

$$I_{2\times 2} = \begin{bmatrix} \mathbf{1} & 0 \\ 0 & 1 \end{bmatrix} \quad ; \quad I_{3\times 3} = \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

8. Matriz Inversa

A matriz Inversa da matriz A é A^{-1} tal que $A \times A^{-1} = I$

Só as matrizes quadradas com Determinante não nulo é que têm inversa

$$Seja\ A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}.\ Calculemos\ A^{-1} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}\ sabendo\ que\ \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Efectaundo a multiplicação temos
$$\begin{bmatrix} 2a+3b & 2c+3d \\ 1a+2b & c+2d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A igualdade só se verifica se
$$\begin{bmatrix} 2a+3b=\mathbf{1} & 2c+3d=\mathbf{0} \\ 1a+2b=\mathbf{0} & c+2d=\mathbf{1} \end{bmatrix}. A solução \'e a=2, b=-1, c=-3; d=2$$

A matriz Inversa é pois
$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

9. Caso particular da Inversa de uma Matriz 2 x 2

Seja
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. O determinante de $A \in \Delta = (ad - bc)$.

Sendo
$$A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$
 o determinante é $\Delta = [2 \times (-2)] - [1 \times (-6)] = 2$

Para Inverter a matriz $A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$ com determinante $\Delta = 2$

 1° **trocam** – **se** os elementos da diagonal principal ficando $\begin{bmatrix} -2 & -6 \\ 1 & 2 \end{bmatrix}$,

 2° multiplcam – se por-1 os elementos da diagonal secundária ficando $A = \begin{bmatrix} -2 & 6 \\ -1 & 2 \end{bmatrix}$

 3° dividem – se todos os elementos pelo determinante $\Delta = 2$ da matriz

$$A^{-1} = 2 \times \begin{bmatrix} -2 & 6 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ -1/2 & 1 \end{bmatrix}$$

Exemplo:
$$A = \begin{bmatrix} 4 & -1 \\ -6 & 2 \end{bmatrix}$$
 $com \Delta = 8 - 6 = 2$; $A^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} \\ 3 & 2 \end{bmatrix}$

10. Matriz dos Cofactores

Para cada elemento a_{ij} de uma matriz há um Cofactor associado $C_{ij}=(-1^{i+j})$. M_{ij}

 M_{ij} é o determinante da matriz que se obtém quando na matriz A se elimina a linha "i" e a coluna "j"

Exemplo do cálculo do Cofactor C_{11} associado ao elemento a_{11} da Matriz seguinte:

$$C_{11} = (-1^{1+1}). M_{11} = (-1^2). (3) = 3$$

Cálculo da matriz dos Cofactores da matriz A:

$C_{11} = -1^{1+1} \begin{vmatrix} 2 & -1 \\ 3 & 0 \end{vmatrix} = 3$	$C_{12} = -1^{1+2} \begin{vmatrix} 0 & -1 \\ 2 & 0 \end{vmatrix} = -2$	$C_{13}=-1^{1+3}\begin{vmatrix}0&2\\2&3\end{vmatrix}=-4$
$C_{21} = -1^{2+1} \begin{vmatrix} -1 & 1 \\ 3 & 0 \end{vmatrix} = 3$	$C_{22} = -1^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2$	$C_{23} = -1^{2+3} \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = -5$
$C_{31} = -1^{3+1} \begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix} = -1$	$C_{32} = -1^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} = 1$	$C_{33} = -1^{3+3} \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2$

Matriz dos cofactoes da matriz
$$A = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$

11. Matriz Adjunta e Matriz Inversa da matriz "A"

A matriz Adjunta da matriz A é a matriz Transposta da matriz dos cofactores dos seus elementos

Recorrendo à matriz do número anterior a matrz Adjunta,
$$Adj(A) = \begin{bmatrix} C_{ij} \end{bmatrix}^T = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$

A matriz Inversa da matriz "A" obtém-se dividindo a matriz Adjunta de "A" pelo determinante desta que é Δ = 1

$$A^{-1} = \frac{1}{det(A)} \times Adj(A) = \frac{1}{1} \times \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$

12. Regra de Sarrus para cálculo do Determinante de matriz de ordem 3

Vejamos como foi calculado o determinante da matriz anterior (3 x 3)

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0 \end{bmatrix}$$

Para aplicar a regra de Sarrus é necessário:

- aumentar a matriz, à direita, com as suas duas primeiras colunas

- traçar as diagonais paralelas à diagonal principal e somar os produtos dos seus elementos

- traçar as diagonais paralelas à diagonal secundária e somar os produtos dos seus elementos

- o determinante da matriz é igual à diferença entre os somatórios principal (2) e secundário (1), sendo Δ = 2 -1 = 1

13. Calcular a matriz Inversa - Método de Gauss-Jordan

Inicia-se com a matriz original Aumentada com uma matriz Identidade adjacente.

Seja a matriz $A=\begin{bmatrix}4&-1\\-6&2\end{bmatrix}$. Há Inversa? Calcular o determinante que é $\Delta=8-6=2\neq 0$. Há Inversa

Matriz Aumentada
$$\begin{bmatrix} 4 & -1 & 1 & 0 \\ -6 & 2 & 0 & 1 \end{bmatrix}$$

Recorre – se a transformações lineares para obter a matriz: $\begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{bmatrix}$ onde teremos

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

1° PASSO – TRANSFORMAR A 1ª COLUNA para obter o vector : $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Para ter $a_{11} = 1$ divido a 1^a linha por 4 e tenho a linha Pivot :

$$\frac{4}{4} = 1$$
 $-\frac{1}{4}$ $\frac{1}{4}$ 0

Para ter $a_{21} = 0$ multiplico a actual linha Pivot por 6 e somo com a 2^a linha

$$6 \times 1 + (-6) = 0$$
 $6 \times (-\frac{1}{4}) + 2 = \frac{1}{2}$ $6 \times (\frac{1}{4}) + 0 = \frac{3}{2}$ $6 \times 0 + 1 = 1$

Fim do 1º Passo (1ª coluna pronta):
$$0 - \frac{1}{4} = \frac{1}{4} = 0$$
 $\frac{1}{2} = \frac{3}{2} = 1$

2º PASSO - TRANSFORMAR A 2ª COLUNA CORRENTE

Para ter $a_{22} = 1$ divido a 2^a linha por $\frac{1}{2}$ e tenho NOVA linha Pivot :

$$\frac{0}{1/2} = 0 \quad \frac{1/2}{1/2} = 1 \quad \frac{3/2}{1/2} = 3 \quad \frac{1}{1/2} = 2$$
Temos agora:
$$1 \quad \left(-\frac{1}{4}\right) \frac{1}{4} \quad 0$$

$$0 \quad 1 \quad 3 \quad 2$$

Para ter $a_{12} = 0$ multiplico a actual linha Pivot por $\frac{1}{4}$ e somo com a 1ª linha

$$\frac{1}{4} \times 0 + 1 = 1$$
 $\frac{1}{4} \times 1 + (-\frac{1}{4}) = 0$ $\frac{1}{4} \times 3 + \frac{1}{4} = 1$ $\frac{1}{4} \times 2 + 0 = \frac{1}{2}$

Matriz Inversa
$$A^{-1} = \begin{pmatrix} * & * & 1 & \frac{1}{2} \\ * & * & 3 & 2 \end{pmatrix}$$

14. Exemplo do cálculo da matriz Inversa pelo método de Gauss-Jordan

$$A = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 1 & -1 \\ 2 & -2 & 0 \end{bmatrix}$$

1º Aumentar a matriz à direita com matriz Identidade

 $2^{\underline{o}}$ Transformar linearmente o conjunto de vectores para obter a Matriz Identidade à esquerda

Decisão							Obs.
A	2	-2	1	1	0	0	
В	0	1	-1	0	1	0	
С	2	-2	0	0	0	1	
D = dividir linha A por 2	1	-1	1/2	1/2	0	0	
E = multiplicar linha D por 0 e somar a linha B	0	1	-1	0	1	0	
F = multiplicar linha D por -2 e somar a linha C	0	0	-1	-1	0	1	1ª coluna pronta
H = multiplicar linha G por 1 e somar a linha D	1	0	- 1/2	1/2	1	0	
G = dividiir linha E por 1	0	(1)	-1	0	1	0	
I = multiplicar linha G por 0 e somar a linha F	0	0	-1	-1	0	1	2ª coluna pronta
K = multiplicar linha J por 0.5 e somar à linha H	1	0	0	1	1	- 1/2	
L = multiplicar linha J por 1 e somar à linha G	0	1	0	1	1	-1	
J = dividir linha l por -1	0	0	1	1	0	-1	3ª coluna pronta

A matriz Inversa de A é
$$A^{-1} = \begin{bmatrix} 1 & 1 & -1/2 \\ 1 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

15. Característica da matriz

A Característica indica o número máximo de linhas ou colunas linearmente independentes da matriz quadrada ou rectangular.

Para calcular a Característica da matriz é necessário escaloná-la.

Uma matriz considera-se escalonada, se satisfaz as seguintes condições:

- Todos os elementos abaixo de cada pivô são nulos

- se uma linha contém apenas zeros, ela deve estar abaixo das linhas que contêm elementos não nulos
- o pivô de uma linha está sempre à direita do pivô da linha anterior (ou seja, eles "escalam" para a direita ao descer pelas linhas da matriz).

Passos para escalonar uma matriz:

- Escolha de um pivô: O pivô é o primeiro elemento não nulo de uma linha. Se a primeira coluna tiver um número diferente de zero, esse será o pivô da primeira linha.
- Criar zeros abaixo do pivô: Usando operações elementares, subtrair múltiplos da linha do pivô das linhas abaixo, de modo a criar zeros abaixo do pivô.
- Repetir para as linhas seguintes: Passar para a linha seguinte e repetir o processo, criando pivôs nas colunas subsequentes e anulando os elementos abaixo desses pivôs.
- Colocar as linhas nulas (se houver) no final: Se houver linhas compostas inteiramente por zeros devem ser movidas para o final da matriz.

Exemplo:

L1: dividir por 4

Novas linhas 2 e 3 Linha 1 x (8) + linha 2 anterior Linha 1 x (-1) + linha 3 anterior

Linha de zeros passou para última linha

4	-2	5		
-8	4	-10		
1	2	2		
1	-0.5	1.25		
-8	4	-10		
1	2	2		
1	-0.5	1.25		
0	0	0		
0	2.5	0.75		
1	-0.5	1.25		
0	2.5	0.75		
0	0	0		

Matriz escalonada:

- há zeros abaixo de cada pivô.
- cada pivô está à direita do pivô da linha anterior.
- duas linhas não totalmente nulas
- Característica da matriz igual a 2

Notas: na matriz há pois 2 linhas linearmente independentes (veja-se que a 2ª linha é múltipla da 1ª).

Uma linha diferente de zero tem pelo menos um dos elementos diferente de zero

P.S Internet (calculadoras para Álgebra): https://www.emathhelp.net/pt/calculus-calculator/

Morais da Silva

20Set24