
Método Dual Simplex 
 

VIII. MÉTODO DUAL-SIMPLEX 

1. Introdução 
Uma solução gerada pelo método Simplex só é Óptima se satisfaz simultaneamente dois critérios: 

• Critério de Admissibilidade: as variáveis básicas têm valor não negativo 

• Critério de Paragem: na equação da função objectivo no quadro do Simplex, os coeficientes das variáveis 
de decisão e de equilíbrio são todos não negativos (Maximização) ou não positivos (Minimização) 

 
A qualquer solução do problema Primal que satisfaça o Critério de Admissibilidade está associada uma solução do 
problema Dual que satisfaz o Critério de Paragem. 
A qualquer solução do problema Primal que satisfaça o Critério de Paragem está associada uma solução do 
problema Dual que satisfaz o Critério de Admissibilidade. 
Comparemos os quadros Simplex de soluções Não Óptimas dos problemas seguintes: 

 
Problema Primal  Problema Dual 

Max f(X) = 6x1 + 8x2  Min g(Y) = 300y1 + 110y2 

s.a. 30x1 + 20x2 ≤ 300  s.a. 30y1 + 5y2 ≥ 6 
 5x1 + 10x2 ≤ 110   20y2 + 10y2 ≥ 8 
  x1 , x2 ≥ 0    y1 , y2 ≥ 0 

 
Soluções associadas (complementares) dos problemas Primal e Dual

Problema Primal  Problema Dual 
VB x1 x2 F1 F2 VSM  VB y1 y2 y3 y4 A1 A2 VSM 
F1 20 0 1 -2 80  y2 2 1 0 - 1/10 0 1/10 4/ 5 

x2  1/2 1 0  1/10 11  y3 - 20 0 1 - 1/2 -1 1/2 - 2 

 f (X) - 2 0 0  4/ 5 88  g(Y) - 80 0 0 -11 0 11 88 
               

Satisfaz o Critério de Admissibilidade  Satisfaz o Critério de Paragem 
Não satisfaz o Critério de Paragem  Não satisfaz o Critério de Admissibilidade 

 
A mudança da base no problema Primal implica: 

Nova VB : x1 

Nova VNB : F1 

No Dual a variável auxiliar  y3 é complementar da variável de decisão x1 do problema Primal. 

Se x1 entra para a base corrente do Primal então y3 sai da base corrente do Dual (mantém-se x1y3 = 0). 

No Dual a variável de decisão  y1 é complementar da variável auxiliar F1 do problema Primal. 

Se F1 sai da base corrente do Primal então y1 entra para a base corrente do Dual (mantém-se F1y1 = 0). 
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Os quadros resultantes destas decisões são os seguintes: 
 

Problema Primal  Problema Dual 
VB x1 x2 F1 F2 VSM  VB y1 y2 y3 y4 A1 A2 VSM 
x1 1 0 1/20

 -1/10 4  y1 1 0 -1/20  1/40 1/20 -1/40  1/10 

x2 0 1 -1/40
 3/20 9  y2 0 1  1/10 -3/20 -1/10  3/20 3/5 

f(X) 0 0 1/10 3/5 96  g(Y) 0 0 - 4 - 9 4 9 96 
               

Satisfaz o Critério de Admissibilidade  Satisfaz o Critério de Paragem 
Satisfaz o Critério de Paragem  Satisfaz o Critério de Admissibilidade 

 
Porque as duas soluções satisfazem simultaneamente os dois critérios as soluções associadas são Óptimas. 
As  relações de complementaridade Primal-Dual são, como vimos, o fundamento do método do Dual-Simplex. 

2. Método do Dual-Simplex 
Admitamos agora que, dispondo do quadro óptimo do problema Primal pretendemos estudar as consequências da 
alteração do 2º membro da 1ª restrição de 300 para 200. 

Recorrendo á versão matricial do Simplex recalculamos  e o valor de f(X) obtendo a solução seguinte: BAm
1−

VB x1 x2 F1 F2 VSM 
x1 1 0 1/20

 -1/10 -1 
x2 0 1 -1/40

 3/20 23/2 

f(X) 0 0 1/10 3/5 86 
 

Esta nova solução do problema Primal : 

• não é admissível ( x1 < 0)  

• satisfaz o critério de paragem porque todos os coeficientes na equação de f(X), do quadro Simplex, 
são não negativos 

 
A solução Dual associada: 

• não satisfaz o critério de paragem porque há coeficientes positivos na equação de g(Y) do quadro 
Simplex associado 

• satisfaz o critério de admissibilidade ( y1 = 1/10 ; y2 = 3/5 ; y3 = y4 = 0)  

 
Diremos que no quadro do Primal temos uma SBNAP (Solução Básica Não Admissível do Primal) e  uma SBAD 
(Solução Básica Admissível do Dual). 
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Método Dual-Simplex 
Só pode ser utilizado quando no quadro do Primal existe uma SBNAP associada a uma SBAD 

 
(Dual-Simplex sugere o uso do Simplex no quadro Primal mas resolvendo o problema Dual associado) 

 

Para melhor apreender o método Dual-Simplex vamos fazê-lo na presença dos quadros Simplex associados dos 
dois problemas: 

Problema Primal (Max)  Problema Dual (min) 
VB x1 x2 F1 F2 VSM  VB y1 y2 y3 y4 A1 A2 VSM 
x1 1 0 1/20

 -1/10 -1  y1 1 0 -1/20 1/40 1/20 -1/40 1/10 
x2 0 1 -1/40

 3/20 23/2  y2 0 1 1/10 -3/20 -1/10 3/20 3/5 

f(X) 0 0 1/10 3/5 86  g(Y) 0 0 1 -23/2 -1 23/2 86 
 y3 y4 y1 y2    -F1 -F2   x1 x2  

SBNAP  SBAD 
SBAD  SBNAP 

 
Para prosseguir a optimização no quadro Dual: 
o entra para a base a variável y3 porque tem o maior coeficiente positivo em g(Y) 

o sai da base y2  (menor “ratio” não negativa ( 3/5 ) / ( 1/10 ) = 6) 

 
Para reproduzir esta mudança de base, actuando no quadro do Primal, é necessário decidir do seguinte modo: 

• sai da base a variável x1 ( é complementar de y3 que entra para a base do problema Dual) 

• entra para a base a variável F2 (é complementar da variável y2 que sai da base do problema Dual) 

 
Deste estudo comparativo, conclui-se que é possível resolver o problema Dual actuando apenas no quadro do 

problema  Primal (o que justifica designar o método por Dual-Simplex). 

 
Da sequência de decisões que obtivemos para o quadro Primal (sai x1 ; entra F2) podemos estabelecer que no 

Dual-Simplex a mudança de base, no quadro Simplex do problema Primal, é efectuada com a seguinte sequência.: 
 

 
         1º Seleccionar a  variável que sai da base corrente 

 
         2º  Seleccionar a variável que entra para a nova base  
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3. Dual-Simplex : Seleccionar, no quadro Simplex do Primal, a variável que sai da base 
O critério a utilizar deve garantir que se reduza ou anule a não admissibilidade da solução do problema Primal. 
Se a falta de admissibilidade decorre da existência de VB com valor negativo, deve sair da base a VB com valor 
mais negativo. 

4. Dual-Simplex: Seleccionar, no quadro Simplex do Primal, a variável que entra para a base 
Retomemos os quadros associados anteriores: 

Problema Primal (Max)  Problema Dual (min) 
VB x1 x2 F1 F2 VSM  VB y1 y2 y3 y4 A1 A2 VSM 
x1 1 0 1/20

 -1/10 -1  y1 1 0 -1/20 1/40 1/20 -1/40 1/10 
x2 0 1 -1/40

 3/20 23/2  y2 0 1 1/10 -3/20 -1/10 3/20 3/5 

f(X) 0 0 1/10 3/5 86  g(Y) 0 0 1 -23/2 -1 23/2 86 
 y3 y4 y1 y2    -F1 -F2   x1 x2  

 

       
       

       

       
       

Mudança de Base no quadro do Dual 
 

 Entra y3 : coeficiente mais positivo em g(Y) 

 Sai y2  : menor “ratio” não negativa é ( ) ( ) 6/ 10
1

5
3 =  

    
 

Estudada a mudança de base no quadro do Dual examine-se o quadro associado do Primal para encontrar o critério 
da escolha da variável que deve entrar para a base (sabendo já que a variável que sai da base é x1). 

A "ratio" mínima, em valor absoluto, é 6
10

1/
5
3

=⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛  que se estabelece na coluna de F2. 

Porque é necessário que no quadro seguinte a solução continue a satisfazer o critério de paragem (todos os 
coeficientes da equação da função não negativos) a regra para escolher a variável que entra para a base é a 
seguinte: 

 

 
Dual-Simplex : Escolha da nova VB no quadro do Primal 

 
Equação-pivot : equação da variável que sai da base 

 
Entra para a base a variável onde se verifica o menor valor absoluto das "ratio" estabelecidas entre 
os coeficientes na equação da função objectivo e os coeficientes negativos da equação-pivot. 
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Apliquemos esta regra no quadro do Primal onde se decidiu que x1 sai da base: 

 

Problema Primal  Problema Dual 
VB x1 x2 F1 F2 VSM  VB y1 y2 y3 y4 A1 A2 VSM 
x1 1 0 1/20

 -1/10 -1  y1 1 0 -1/20 1/40 1/20 -1/40 1/10 
x2 0 1 -1/40

 3/20 23/2  y2 0 1 1/10 -3/20 -1/10 3/20 3/5 

f(X) 0 0 1/10 3/5 86  g(Y) 0 0 1 -23/2 -1 23/2 86 
 y3 y4 y1 y2    F1 F2   x1 x2  

         
         

         

         

Equação-pivot : linha de x1  
Só há um coeficiente negativo para  
divisor… 
 
     “Ratio(s)” em valor absoluto: 
                ( ) ( ) 6/ 10

1
5
3 =−  

        Sai da base a variável F2 
No quadro seguinte o coeficiente de x1, na 
equação de f(X), será “6” (valor da “ratio”) 

         

 

Problema Primal Obs. 
VB x1 x2 F1 F2 VSM  
x1 1 0 1/20

 -1/10 -1 Sai x1 

x2 0 1 -1/40
 3/20 23/2 Entra F2 

f(X) 0 0 1/10 3/5 86  
F2 - 10 0 -1/2 1 10  
x2 3/2 1 1/20 0 10  

f(X) 6 0 2/5 0 80 Novo Óptimo 
 

Solução óptima do problema Primal:  80)(;
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Notar que a admissibilidade da nova solução é consequência da divisão da equação “pivot” por um coeficiente 
negativo (eis porque se escolhe um valor negativo para divisor da “ratio”…). 
Aconselha-se o leitor a iterar no quadro do problema Dual e comparar  o quadro óptimo com o que foi calculado 
para o problema Primal. 
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5. RESUMO DO MÉTODO DO DUAL-SIMPLEX  
 

 
Condições necessárias para aplicar o Dual-Simplex no quadro do problema Primal  

 

• A Solução Básica do Primal, não é admissível (SBNAP) 

• A Solução Básica do Dual, é admissível (SBAD) 

 
Ter sempre em atenção o seguinte: 

• se a solução Primal satisfaz o critério de paragem, a solução Dual é admissível 

 

 
Variável que sai da base da solução do Primal 

 

• Variável Básica com valor negativo de maior valor absoluto (mais negativa) 

 

 

 
Variável que entra para a base da solução do Primal 

 
Considerando “pivot” a equação (linha) da VB que sai da base: 
 
Entra para a base a variável onde se registar o menor valor absoluto das “ratio” entre os 

coeficientes da função objectivo e os coeficientes negativos da equação "pivot". 
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6. EXEMPLO DE APLICAÇÃO (Maximização da função objectivo) 
Considere-se a seguinte solução da Maximização de f(X) = - 4x1 - 2x2 - 3x3: 

 

VB x1 x2 x3 F1 F2 F3 VSM 
x2 0 1 1/3 0 0 -1/3 3 
F1 -1 0 -1/3 1 0 -2/3 -1 
F2 -2 0 -3 0 1 0 -5 

f(X) 4 0 7/3 0 0 2/3 -6 
 

A solução não é admissível (SBNAP). 
A solução satisfaz a regra de paragem pelo que a solução do Dual é admissível (SBAD). 
Pode aplicar-se, neste quadro, o método Dual-Simplex para progredir no cálculo da solução óptima. 
Estudo da mudança de base: 

• Quem sai da base? 
 Variável F2 por ser a VB com valor mais negativo. A linha de F2 é a equação “pivot” para escolha dos 

divisores para estabelecer  “ratios” 

• Quem entra para a base? 

  Variável x3 porque das “ratios” com divisor negativo 
3
3/7,

2
4

−−
 a de menor valor absoluto é 

9
7  (coluna de x3) 

Nova solução: 

VB x1 x2 x3 F1 F2 F3 VSM 
x3 2/3 0 1 0 -1/3 0 5/3 

x2 -2/9 1 0 0 1/9 -1/3 22/9 
F1 

-7/9 0 0 1 -1/9 - 2/3 - 4/9 

f(X) 22/9 0 0 0 7/9 2/3 -89/9 
 
A solução não é admissível (SBNAP). 
A solução satisfaz a regra de paragem pelo que a solução do Dual é admissível (SBAD). 
Pode aplicar-se, neste quadro, o método Dual-Simplex para progredir no cálculo da solução óptima. 
Estudo da mudança de base: 

• Variável que sai da base: F1 (é a VB com valor mais negativo). A equação “pivot” é a linha desta VB. 

• Variável que entra para a base: F3 porque, 

 “Ratios” com divisor negativo : 
3/2

3/2,
9/7
9/22

−−
  

 “Ratio” com menor valor absoluto: 11,
7
22

=−−  na coluna de F3 
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Nova solução: 

VB x1 x2 x3 F1 F2 F3 VSM  
F3 

7/6 0 0 -3/2 1/6 1 2/3  

x3 2/3 0 1 0 -1/3 0 5/3  

x2 1/6 1 0 -1/2 1/6 0 8/3  

f(X) 5/3 0 0 1 2/3 0 -31/3 Óptimo 
 

Solução óptima do problema Primal: 3
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Solução óptima do problema Dual:     3
31*
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7. EXEMPLO DE APLICAÇÃO (Minimização da função objectivo) 
Resolver o modelo seguinte recorrendo ao método Dual-Simplex: 
Min f(X) = 7x1 +  5x2 +  x3   

s.a.      

5x1   - 3x3 ≥ 7 

  2x2 - 5x3 ≥ 4 
x1 - 3x2   ≤ 3 

  x1 , x2 , x3 ≥ 0 
 

Multiplicando as duas primeiras restrições por “-1” temos: 

-5x1   + 3x3 ≤ - 7 

 - 2x2 + 5x3 ≤ - 4 
x1 - 3x2   ≤ 3 

  x1 , x2 , x3 ≥ 0 
 
Quadro Inicial: 

VB x1 x2 x3 F1 F2 F3 VSM 
F1 -5 0 3 1 0 0 -7 
F2 0 -2 5 0 1 0 -4 
F3 1 -3 0 0 0 1 3 

f(X) -7 -5 -1 0 0 0 0 
 
A solução não é admissível (SBNAP). 
A solução satisfaz a regra de paragem, em minimização, pelo que a solução do Dual é admissível (SBAD). 
Pode aplicar-se, neste quadro, o método Dual-Simplex para progredir no cálculo da solução óptima. 
Estudo da mudança de base: 

• Variável que sai da base: F1 (é a VB com valor mais negativo). A equação “pivot” é a linha desta VB. 

• Variável que entra para a base: x1 porque é a única que tem coeficiente negativo na equação “pivot”; a 

“ratio” óptima é 7/5. 

Nova solução: 

VB x1 x2 x3 F1 F2 F3 VSM 
x1 1 0 -3/5 -1/5 0 0 7/5 
F2 0 -2 5 0 1 0 -4 
F3 0 -3 3/5 1/5 0 1 8/5 

f(X) 0 -5 -26/5 -7/5 0 0 49/5 
 
Aplicando o Dual-Simplex  sai da base a variável F2 e entra para a base a variável x2.  
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Nova solução: 

VB x1 x2 x3 F1 F2 F3 VSM  
x2 0 1 -5/2 0 -1/2 0 2  
x1 1 0 -3/5 -1/5 0 0 7/5  

F3 0 0 -69/10 1/5 -3/2 1 38/5  

f(X) 0 0 -177/10 -7/5 -5/2 0 99/5 Óptimo 
 

Solução óptima do problema Primal: 5
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Solução óptima do problema Dual:     5
99*
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Notar que as 1ª e 2ª restrições do modelo foram alteradas para gerar uma SBNAP associada a uma SBAD e assim 
poder aplicar o método Dual-Simplex.  
No quadro óptimo obtido, para efectuar correctamente a leitura da solução Dual, é preciso considerar as restrições 
lógicas deste problema associadas ao modelo Primal não modificado. O modelo Dual é: 

Min f(X) = 7x1 +  5x2 +  x3    

s.a.      

5x1   - 3x3 ≥ 7 Variável dual associada é y1 ≥  0 

  2x2 - 5x3 ≥ 4 Variável dual associada é y2 ≥  0 

x1 - 3x2   ≤ 3 Variável dual associada é y3  ≤  0 

  x1 , x2 , x3 ≥ 0  
 
O valor das variáveis duais tem pois que ser feito à luz destas conclusões ou seja lê-se no quadro Primal: 

y1 = 7/5 e não  -7/5   ;    y2 = 5/2 e não  -5/2    ;    y3 = 0 

Notar ainda que o valor de variáveis auxiliares é sempre não negativo pelo que se lê: 

    y4 = y5 = 0  ;  y6 = 177/10 e não  –177/10 

Deixa-se ao leitor o cuidado de conferir estes valores nas equações da forma-padrão do problema Dual. 
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8. EXEMPLO DE APLICAÇÃO  (Problema Dual com Solução Indeterminada) 
No capítulo VII foi apresentado o exemplo seguinte:  

     

0
42
422

2

321

32

321

321

≥
≤+
≤++

++=

,x,xx
xx         
xxx

s.a.
xxxf(X)Max

 

com o seguinte quadro óptimo: 

VB x1 x2 x3 F1 F2 Termo Independente 
x2 1 1 1/2 1/2 0 2 
F2 -2 0 0 -1 1 0 

f(X) 1 0 0 1 0 4 
 
A solução básica do Primal é degenerada. 
Na base corrente é possível trocar a variável F2 pela variável x1 recorrendo ao método Dual-Simplex.  

A solução do problema Primal não se altera com a mudança da base porque é uma solução degenerada mas 
o mesmo não sucede com a solução do problema Dual dado que à mudança de base referida está associada 

uma “ratio” absoluta não nula (1/2). Este valor será o novo coeficiente da variável F2 e portando o novo valor de 

uma das variáveis do problema Dual. 
Em suma, o problema Dual tem solução óptima indeterminada sendo pois necessário obter outra solução 
sabendo que sai da base a variável F2  (equação “pivot” é a linha desta VB) e entra para a base a variável x1 

(“ratio” diferente de zero…). 
O quadro da nova solução é: 

VB x1 x2 x3 F1 F2 Termo Independente Obs. 
x1 1 0 0 1/2 -1/2 0  

x2 0 1 1/2 0 1/2 2  

f(X) 0 0 0 1/2 1/2 4 Novo óptimo Dual 
 
Obtiveram-se duas soluções óptimas para o problema Dual: 
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A expressão geral das soluções óptimas do problema Dual é então: 
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9. MÉTODO DA RESTRIÇÃO ARTIFICIAL 
O método do Dual-Simplex é aplicável quando se dispõe de uma solução não admissível do problema Primal 
(SBNAP) e de uma solução admissível para o problema Dual (SBAD). 
Há contudo situações de Pós-optimização em que pode ocorrer simultaneamente a não admissibilidade das 
soluções dos dois problemas (SBNAP e SBNAD) o que impede a aplicação do método Dual-Simplex como se 
conclui no exemplo seguinte: 

 
Max f (X) = -7x1 + 5x2 + x3   

s.a.      

  -2x2 - 3x3 ≤ -4  Variável dual associada é y1 ≥ 0 
-2x1   - 3x3 ≤ -7  Variável dual associada é y2  ≥ 0 
x1 + 3x2 + x3 ≤ 10  Variável dual associada é y3 ≥ 0 
      x1 , x2 , x3 ≥ 0 

 
Quadro Inicial: 

VB x1 x2 x3 F1 F2 F3 VSM  
F1 0 -2 -3 1 0 0 -4  
F2 -2 0 -3 0 1 0 -7 SBNAP 
F3 1 3 1 0 0 1 3 SBNAD 

f(X) 7 -5 -1 0 0 0 0  
 

A solução do Primal não é admissível (F1 e F2 têm valor negativo). 

A solução não satisfaz o critério de paragem pelo que a solução do problema Dual não é admissível (a solução do 
Dual é  y1= y2 = y3  = 0 ; y4 = 7 ;  y5 = -5 ;  y6 = -1 ; os valores de y5 e y6 violam as restrições lógicas). 

 

Vejamos como actuar para gerar uma solução admissível para o problema Dual e assim tornar possível a aplicação 
do método Dual-Simplex: 
 

• Identificar as variáveis do problema Primal cujos coeficientes, na equação de f(X), têm valor não 
admissível para as variáveis Duais. No exemplo corrente são as variáveis x2 e x3 (são ambas 

seleccionáveis para a base, na maximização…) 

• Considerar a soma das variáveis identificadas com limite superior ilimitado ( “big M” ) e aumentar o 
problema original com esta restrição artificial: 

x2  +   x3  ≤  M  (não altera o espaço de soluções porque é redundante) 

 

A restrição artificial, na forma padrão,  é  x2 +  x3 +  x0 = M  sendo x0 ≥ 0 a variável de folga. Esta equação é 

inserida no quadro inicial onde também é aberta uma coluna para a variável x0 que é VB da solução inicial. 
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Quadro inicial aumentado com a restrição artificial: 
 

VB x1 x2 x3 F1 F2 F3 x0 VSM 
F1 0       -2       -3       1       0       0       0       -4       
F2 -2       0       -3       0       1       0       0       -7       
F3 1       3       1       0       0       1       0       10       
x0 0       1       1       0       0       0       1       M 

f(X) 7       -5 -1 0 0 0 0 0       
 

A primeira mudança de base é sempre efectuada entre variáveis da restrição artificial (x2 , x3 e x0) e de 

acordo com as seguintes regras: 

• sai sempre da base a variável de folga da restrição artificial (x0)  

• entra sempre para a base a variável da restrição artificial que tem, na equação de f(X), o coeficiente 
“mais inadmissível” para valor de uma variável Dual. Neste caso entra para a base a variável x2 

(coeficiente “-5”) 
Desta mudança de base resultará sempre uma solução admissível para o problema Dual (SBAD) onde se 
poderá aplicar o método do Dual-Simplex. 
 
Vejamos então a 1ª mudança de base: 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
F1 0       -2       -3       1       0       0       0       -4       Obrigatório: 
F2 -2       0       -3       0       1       0       0       -7       Sai x0 
F3 1       3       1       0       0       1       0       10       Entra x2 
x0 0       1       1       0       0       0       1       M  

f(X) 7       -5 -1 0 0 0 0 0        
x2 0       1       1       0       0       0       1       M SBNAP 
F1 0       0       -1       1       0       0       2       - 4+ 2M SBAD 
F2 -2       0       -3       0       1       0       0       -7        
F3 1       0       -2       0       0       1       -3       10 - 3M  

f(X) 7       0       4       0       0       0       5       5M  
 

 
A solução obtida não é admissível para o problema Primal (SBNAP) porque F2 e F3 têm valor negativo mas, porque 

satisfaz a regra de paragem, a solução do problema Dual é admissível (SBAD) podendo agora aplicar-se o método 
Dual-Simplex. 
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Os quadros seguintes resultam da aplicação do método Dual-Simplex: 
 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
x2 0       1       1       0       0       0       1       M SBNAP; SBAD 
F1 0       0       -1       1       0       0       2       - 4 +  2M  

F2 -2       0       -3       0       1       0       0       -7       Sai F3 

F3 1       0       -2       0       0       1       -3       10 - 3M Entra x0 

f(X) 7       0       4       0       0       0       5       5M  

x0 -1/3  0         2/3  0       0       -1/3  1       -10/3 + M  
x2   1/3  1         1/3  0       0         1/3  0       10/3 SBNAP; SBAD 
F1   2/3  0       -7/3 1       0         2/3  0       8/3 Sai F2 

F2 -2       0       -3       0       1       0       0       -7       Entra x3 

f(X) 26/3 0         2/3  0       0       5/3 0       50/3  

 
Notar que a variável de folga da restrição artificial (x0) entrou para a base o que conduziu a valores finitos das 

restantes variáveis da restrição artificial ( x1 = 0 ; x2 = 10/3 ). 

O elevado valor de x0 = M - 10/3 torna-a definitivamente variável básica pelo que as suas linha e coluna do quadro 

Simplex podem ser eliminadas: 
 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
x3   2/3  0       1       0       -1/3  0        7/3 SBAP 
x2   1/9  1       0       0         1/9    1/3   23/9 SBAD 
F2 

20/9 0       0       1       -7/9    2/3   73/9  

f(X) 74/9 0       0       0        2/9  5/3  136/9 Óptimo 
 

Solução óptima do problema Primal: 9
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Solução óptima do problema Dual:     9
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10. EXEMPLO DE APLICAÇÃO  (Restrição Artificial em problema de Minimização) 
Considere-se o modelo de PL: 
Min f (X) = 7x1 + 5x2 - x3   

s.a.      

-5x1   + 3x3 ≤ -7  Variável dual associada é y1 ≤ 0 
 - 2x2 + 5x3 ≤ -4  Variável dual associada é y2  ≤ 0 

x1 - 3x2   ≤ 3  Variável dual associada é y3 ≤ 0 
      x1 , x2 , x3 ≥  0 

 
Quadro Inicial: 

VB x1 x2 x3 F1 F2 F3 VSM Obs. 
F1 -5 0 3 1 0 0 -7 SBNAP;  
F2 0 -2 5 0 1 0 -4 F1 , F2 < 0 
F3 1 -3 0 0 0 1 3 SBNAD 

f(X) -7 -5 1 0 0 0 0 y6 = -1 
 -y4 -y5 -y6 y1 y2 y3   

 
SBNAP : solução do Primal não é admissível (F1 e F2 têm valor negativo). 

SBNAD : solução do Dual não é admissível pois a variável auxiliar dual y6 = -1 viola a restrição lógica y6 ≥ 0.  

A leitura desta variável é feita na coluna de x3 … pelo que a restrição artificial a considerar, para obter 

uma SBAD, é: 

x3 ≤ M 

que na forma-padrão é x3 + x0 = M com x0 ≥ 0. 

 
Quadro Inicial aumentado com a restrição artificial: 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
F1 -5 0 3 1 0 0 0 -7 SBNAP; SBNAD 
F2 0 -2 5 0 1 0 0 -4 Entra x3 
F3 1 -3 0 0 0 1 0 3 Sai x0 
x0 0 0 1 0 0 0 1 M Quadro seguinte  

f(X) -7 -5 1 0 0 0 0 0 com  SBAD 
 

Procede-se agora à primeira mudança de base entre variáveis da restrição artificial: 

• Sai da base : x0 (variável de folga da restrição artificial) 

• Entra para a base : x3 (é, neste caso, a única VB da restrição artificial) 

INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

 

VIII-15



Método Dual Simplex 
 

Desta mudança de base resulta o quadro seguinte onde a solução Dual já é admissível (SBAD): 
 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
x3 0 0 1 0 0 0 1 M SBNAP; SBAD 
F1 -5 0 0 1 0 0 -3 -7 - 3M  Aplicar Dual-Simplex 
F2 0 -2 0 0 1 0 -5 -4 - 5M  Sai F2 

F3 1 -3 0 0 0 1 0 3 Entra x0 
f(X) -7 -5 0 0 0 0 -1 -M  

 
Os quadros seguintes resultam da aplicação do método Dual-Simplex: 

 
VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
x0 0 2/5 0 0 -1/5 0 1 4/5 + M SBNAP; SBAD 

F1 -5 6/5 0 1 -3/5 0 0 -23/5 Sai F1 

F3 1 -3 0 0 0 1 0 3 Entra F2 

x3 0 -2/5 1 0 1/5 0 0 -4/5 (x0  é VB ; linha e coluna 
podem eliminar-se) 

f(X) -7 -23/5 0 0 -1/5 0 0 4/5  

F2 
25/3 -2 0 -5/3 1 0  23/3 SBNAP; SBAD 

F3 1 -3 0 0 0 1  3 Sai x3 
x3 -5/3 0 1 1/3 0 0  -7/3 Entra x1 

f(X) -16/3 -5 0 -1/3 0 0  7/3  

x1 1 0 -3/5 -1/5 0 0  7/5 SBNAP; SBAD 

F2 0 -2 5 0 1 0  -4 Sai F2 

F3 0 -3 3/5 1/5 0 1  8/5 Entra x2 

f(X) 0 -5 -16/5 -7/5 0 0  49/5  

x2 0 1 -5/2 0 -1/2 0  2  

x1 1 0 -3/5 -1/5 0 0  7/5  

F3 0 0 -69/10 1/5 -3/2 1  38/5  

f(X) 0 0 -157/10 -7/5 -5/2 0  99/5 Óptimo 

 -y4  -y5  -y6  y1  y2  y3     
          

Soluções óptimas: 
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11. EXEMPLO DE APLICAÇÃO (Restrição Artificial em problema com solução Ilimitada) 
Considere-se o modelo: 
Min f (X) = -7x1 +  5x2 + x3   

s.a.      

-5x1   + 3x3 ≤ -7 
 - 2x2 + 5x3 ≤ -4 

x1 - 3x2   ≤ 3 
     x1 ,x2 , x3 ≥ 0 

 
Quadro Inicial da Minimização: 

VB x1 x2 x3 F1 F2 F3 VSM 
F1 -5 0 3 1 0 0 -7 
F2 0 -2 5 0 1 0 -4 
F3 1 -3 0 0 0 1 3 

f(X) 7 -5 -1 0 0 0 0 
 

SBNAP : solução do Primal não é admissível (F1 e F2 têm valor negativo). 

SBNAD : solução do Dual não é admissível pois a variável auxiliar dual y4 = -7 viola a restrição lógica y4 ≥ 0. A 

leitura desta variável é feita na coluna de x1 pelo que a restrição artificial para obter uma SBAD, é : 

x1 ≤ M  ; na forma-padrão é x1 + x0 = M com x0 ≥ 0 como variável de folga. 

 
Aumento do quadro inicial com a restrição artificial e 1ª mudança de base (troca de x0 por x1): 

VB x1 x2 x3 F1 F2 F3 x0 VSM Obs. 
F1 -5 0 3 1 0 0 0 -7 Obter SBAD 
F2 0 -2 5 0 1 0 0 -4 Sai x0 
F3 1 -3 0 0 0 1 0 3 Entra x1 
x0 1 0 0 0 0 0 1 M  

f(X) 7 -5 -1 0 0 0 0 0  
x1 1 0 0 0 0 0 1 M SBNAP; SBAD 
F1 0 0 3 1 0 0 5 -7 +  5M  Dual-Simplex 

F2 0 -2 5 0 1 0 0 -4 Sai F3 

F3 0 -3 0 0 0 1 -1 3 - M Entra x2 
f(X) 0 -5 -1 0 0 0 -7 -7M  
x2 0 1 0 0 0 -1/3 1/3 -1 +  M/3 SBAP; SBAD 
x1 1 0 0 0 0 0 1 M  Óptimo 
F2 0 0 3 1 0 0 0 -7 +  5M  
F3 0 0 5 0 1 -2/3 2/3 -6 +  2M/3  

f(X) 0 0 -1 0 0 -5/3 -16/3 -5  - 16M/3  
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O problema aumentado tem solução óptima admissível mas as VB têm valor em função de “big M” pelo que se 
conclui que o problema original tem solução ilimitada. 

De facto, f(X) = -7x1 + 5x2 + x3 = - 5 - 16M/3 → -∞  (sem limite inferior) 

Esta situação ocorre porque x0 = 0 (é VNB no óptimo). 

Na equação artificial x1 + x0 = M tem-se x1 = M (sem limite superior). 

Na função objectivo a parcela “-7x1 “ não permite que f(X) tenha valor finito. 
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TÉCNICA DA RESTRIÇÃO ARTIFICIAL  

 
O aumento do problema com uma restrição artificial pode conduzir às situações seguintes: 
 
1ª:   Problema aumentado tem solução óptima admissível: 
 

• Variável de folga da restrição artificial (x0) é VB 

Solução óptima do problema aumentado é solução óptima do problema original (só x0 tem valor 

ilimitado) 
 

• Variável de folga da restrição artificial (x0) é VNB 

O problema original, em regra, não tem solução óptima finita (uma ou mais das variáveis da restrição 
artificial se forem VB têm valor ilimitado…) 

 

2ª:  Problema aumentado não tem soluções admissíveis: 
O problema original também as não tem. 

 

INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

 

VIII-19



Método Dual Simplex 
 

12. AUTO TESTE 
a. A solução óptima do problema Primal a seguir apresentado é única (ver quadro óptimo) 

Max f(X) = 3x1 +  4x2 

s.a. x1 + x2 ≤ 2 
 x1 + 2x2 ≤ 4 
  x1 , x2 ≥ 0 

 
VB x1 x2 F1 F2 VSM 
F1 1 1 1 0 2 
F2 1 2 0 1 4 

 f (X) -3 -4 0 0 0 
x2 1 1 1 0 2 
F2 -1 0 -2 1 0 

 f (X) 1 0 4 0 8 
 
Verifique se a solução óptima do Dual é única ou indeterminada. 
Se concluir que a solução é indeterminada, apresente a expressão geral das soluções óptimas do problema 
Dual. 
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13. SOLUÇÃO DO AUTO TESTE 
a. A solução óptima do problema Dual é Indeterminada dado que: 

• a solução óptima do problema Primal é degenerada (variável básica F2 = 0) 

• na equação onde F2 é VB, há variáveis com coeficiente negativo e é possível estabelecer 

uma “ratio” (Dual Simplex) diferente de zero. Nestas condições, aplicando o Dual-Simplex, é 
possível mudar de base e obter outra solução óptima para o problema Dual: 

 

VB x1 x2 F1 F2 VSM  

F1 1 1 1 0 2  

F2 1 2 0 1 4  

 f (X) -3 -4 0 0 0  
x2 1 1 1 0 2 Óptimo 

F2 -1 0 -2 1 0 Sai F2 

 f (X) 1 0 4 0 8 Entra x1 

x1 1 0 2 -1 0  

x2 0 1 -1 1 2  

 f (X) 0 0 2 1 8 Novo Óptimo 

 y3 y4 y1 y2   
 

Solução óptima única do problema Primal:  8)(;
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Soluções óptimas do problema Dual:   
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Expressão geral das soluções óptimas do problema Dual: 
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Observe a geometria dos dois modelos nas figuras seguintes. 
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Pontos do segmento são soluções óptimas. 
Expressão geral das soluções óptimas:  
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