Método Grafico

IV. METODO GRAFICO
O método grafico s6 permite resolver problemas de PL de pequena dimensdo (duas ou trés variaveis) ndo tendo
pois qualquer interesse pratico.
O método grafico permite visualizar um conjunto de situac¢des que facilitam a compreensao da técnica de célculo
do método do Simplex.
Considere-se 0 seguinte modelo de PL:

Max f(X) = 6x; + 8%,  (funcéo de lucro)

sujeitoa:  30x; +  20x, < 300 (madeira)

5,  + 10x, < 110 (horas de trabalho)

X(, X > 0
O modelo na forma-padrdo Simplex é:
Max f(X) = 6x, + 8%, + OF, + OF,
sueitoa:  30x, + 20x, + F + OF, = 300
5X, + 10x, + OF + F, = 110

X;, % 20F ,F,20
em que F, e F, representam, respectivamente, a madeira e as horas de trabalho ndo utilizadas na producao
(varidveis de folga).
1. Graficar as restrigdes
Considere-se a 1% restri¢do 30x, + 20x, < 300.
Relaxando a condi¢do da desigualdade tem-se 30x; + 20x, = 300 que sendo a equacéo de uma recta pode ser

representada num sistema cartesiano calculando as coordenadas dos pontos A e B em que a recta intersecta 0s
eixos coordenados.

No eixo das abcissas 0 ponto “A” tem ordenada nula (x, = 0) pelo que a equagdo se reduz a 30x, = 300 ou seja
X, = 10. O ponto “A” tem pois as coordenadas (10,0).
No eixo das ordenadas o ponto “B” tem abcissa nula (x; = 0) pelo que a equagdo se reduz a 20x, = 300 ou seja

X, = 15. O ponto “B” tem pois as coordenadas (0,15).
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Na figura seguinte esta graficada a recta definida pelos pontos “A” e “B™:

Madeira

Veja-se a regido admissivel limitada pelos
eixos coordenados (x1 ,xo = 0) e pela

recta de restricio (observar o ponto D).

Admissivel

D(0,0)

.’

— =]

Convexo de
solugdes

\ 4

a. Caso Particular

Admita-se a necessidade de graficar a restricdo x, <2x,

Neste caso a recta x, - 2x, = 0 passa na origem dos eixos (0,0). Outro ponto da recta pode calcular-se
atribuindo um valor a x, (ou x,) e resolvendo a equagéao em ordem a X, (X;).

Considerando, por exemplo, x; = 6 tem-se x, = 3

A recta é tracada pelos pontos (0,0) e (6,3) como mostra a figura seguinte:

A
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2. Variaveis de Folga

A 12 restricdo na forma-padrdo do Simplex € 30x, + 20x, + F, = 300.
A variavel de folga F, representa o desvio entre a madeira consumida (20x, + 30x,) e a madeira disponivel
(300). Para que F, seja admissivel (viavel, aceitavel) & necessario que o consumo de madeira tenha um dos

seguintes valores:

30x, + 20x, = 0 (ndo ha consumo pelo que sobra F, = 300)

30x, + 20x, < 300 (consumo inferior a disponibilidade; sobra F,= 300 - 30x, - 20x,)

30x, +20x, =300 (consumo igual a disponibilidade; ndo ha sobra pelo que F; =0 ; restri¢do saturada)

Se o consumo exceder a disponibilidade tem-se 30x; + 20x, > 300; neste caso tem-se F, < 0 0 que ndo €

admissivel.

Na figura seguinte apresentam-se as situagdes referidas:

F, = 0 (restricdo saturada) ‘

‘Fl <0 (ndo admissivel)‘

s |
f

Convexo de
solugoes

‘Fl >0 (admissivel)‘

v

F, =300 (admissivel)| —v ¥

3. Convexo de Solugbes
Como foi referido no capitulo anterior, o convexo de solugdes pode ser fechado, ilimitado ou vazio. Nas alineas
seguintes apresentam-se modelos de PL associados aos trés tipos referidos.

a. Convexo Fechado

Considere-se 0 modelo apresentado na sec¢éo anterior:

Max f(X) = 6x; + 8x,

sa: 30x, + 20x, < 300
S5 +  10x, < 110
X(, % > 0
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Veja-se na figura seguinte o convexo de solucdes (fechado) e respectivos extremos:

Convexo de
solugBes com
4 extremos

v

»

22\ Xl

b. Convexo llimitado

Considere-se 0 modelo Max f(X) = 4x; + 3x,

sa. -3x * 2X, < 30
5%, + 10x, > 110
X{, Xp > 0

Veja-se na figura seguinte o convexo de solucdes ilimitado e Max f(X) ilimitado.

Notar que f(X) tem valor finito em 3 extremos do espago de solugdes.

Convexo de solucdes ilimitado
Max f(X) = llimitado

/.10

c. Convexo Vazio
Considere-se 0 modelo:
Max f(X) = 4x; + 3x,

sa. 3 ot 6X, < 30
5 + 10x, > 110
Xp, X% 2 0
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Veja-se na figura seguinte o convexo de solucdes vazio:

A
X2

~
¥

4
10\ 22\, Xy

4, Extremos do Convexo de Solugbes

A\

Considere-se 0 modelo padréo proposto na introducédo deste capitulo.
Atendendo as regifes do plano onde as variaveis de folga tém valores negativo (ndo admissivel), nulo (restricdo

saturada) e positivo (recurso abundante) € possivel determinar graficamente o vector X; da solucdo associada a

cada um dos extremos do convexo.
Conhecidas as coordenadas dos extremos é possivel calcular o valor da fungéo objectivo em cada um deles e
por comparacao determinar a solucéo optima.

Na figura seguinte estdo assinalados os extremos X, , X, , X3 & X,

=]

X 0
VN . 0 . . : .
A solugdo X; € E = 300 porque situando-se o extremo na origem dos eixos tem abcissa e ordenada
1
F, 110

nulas. As variaveis de folga tém valor positivo dada a posi¢do do ponto relativamente as rectas de restricdo da

madeira e das horas. Sendo o sistema de equacdes da forma-padrao:
30, + 2x, + F + OF, = 300

5, + 10x, + OF + F, = 110

determinam-se Fl =300e F2 =110.

O valor da funcéo objectivo € f(X;)= 6x; + 8x, + O + 0x, =0
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X, 0
I . # 1 . , :
A solugdo X, € E = 80 porque situando-se 0 extremo no eixo das ordenadas tem abcissa nula e
1
F 0

ordenada 11 ou seja x; = 0 e x, = 11. A variavel de folga F, € nula porque o extremo pertence a recta de restri¢ao
das horas de trabalho (verifica-se a igualdade 5x; + 10x, = 110).

Sendo o sistema de equac¢des da forma-padréo:

30x, + 20, + F, + OF, = 300

5, + 10x, + OF + F, = 110

conhecendo os valores de X, , X, , X, determina-se F, = 80. Trata-se de um valor positivo dada a posi¢do do

extremo relativamente a recta de restricdo da madeira.

O valor da fungdo objectivo € f(X,)= 6x, + 8%, + OF, + OF, =88

X, 4
v oo | X2 | |9 . . : s
A solucdo X; € E = 0 em que as coordenadas x; e X, foram obtidas graficamente ( a figura esta a
1
F, 0

escala).

Estas coordenadas podem determinar-se analiticamente no sistema de equag@es das duas rectas:
0x, + 20x, = 300 |= x,=4
5, + 10x, = 110 |= x,=9

As variaveis de folga F, e F, sdo nulas porque o extremo pertence as rectas de restricdo da madeira e das horas

de trabalho (restricbes saturadas).

O valor da func&o objectivo é f(X3)= 6x; + 8x, + 0x5 + 0x, = 96.

X, 10
I 0 . . .
A solugéo X, é E = 0 porque situando-se este extremo no eixo das abcissas tem ordenada nula e
1
F, 60

abcissa 10 ou seja x; = 10 e x, = 0. A variavel de folga F, € nula porque o extremo pertence a recta de restri¢do
da madeira (verifica-se a igualdade 30x,; + 20x, = 300). No sistema de equagdes da forma-padréo conhecendo
os valores de Xy , X, , X3 determina-se F, = 60.

O valor da funcéo objectivo é f(X,)= 6x, + 8x, + 0x5 + 0x, = 60.
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Sabendo-se que a solugdo Gptima é um extremo do espaco de solu¢des admissiveis e comparando os valores da

funcdo objectivo nos quatro extremos conclui-se que a solucdo 6ptima é:

X, 4
. X 9 .
X" =X, = F2 = | com f(X") =96 um.
1
F, 0

Da leitura da solugdo Gptima conclui-se:
e plano optimo de producéo : x; =4; X, =9
e recursos: a madeira e as horas de trabalho sdo empregues na totalidade (ndo ha sobras)

e |ucro maximo =96 u.m.

5. Solugdo Optima

Na seccao anterior detectou-se a solugdo 6ptima ap6s exame de todos 0s extremos do convexo de solugdes.
Nesta seccdo procederemos a determinagéo grafica do ponto dptimo de forma mais rapida aplicando o conceito
de recta de nivel de um plano.

A func&o objectivo é f(X) = 6x, + 8x, . Considerando f(X)=24 (por exemplo) define-se a equagao ox; +
8x, = 24 de uma recta de nivel do plano que é lugar geometrico dos valores de f(X)=24. Esta recta intersecta o

eixo das abcissas em x1=4 e o das ordenadas em x,=3. Qualquer ponto desta recta tem coordenadas x; € x, a

que corresponde f(X)=24.

Sabendo que em qualquer plano todas as rectas de nivel sdo paralelas entre si é possivel tragar na origem
dos eixos a recta de nivel onde f(X)=0. Deste modo fica a conhecer-se a posi¢ao relativa das rectas de nivel "0" e
"24" e assim conhece-se a direc¢do e sentido de aumento da fungéo objectivo. Veja-se na figura seguinte as

duas rectas de nivel e a direccdo e sentido de aumento de f(X):

X, & >

Notar a perpendicularidade entre as rectas
A’\ de nivel de f(X) e o gradiente de f(X)
15

P ‘ ;=4 ; X, =9. Ponto Optimo ‘

i(X)=24 | —
\6\' - ‘ Direrido do aumento de f(X) ‘

4
22\ Xy g
(o5 | —

Resta agora identificar a Gltima das rectas de nivel que se pode tracar contendo um extremo do convexo de

solucdes. Na figura conclui-se que o ponto de coordenadas x,=4 , X,=9 € 0 extremo optimo.

Porque é tnico a Solucéo Optima é Unica.
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6. Solucao Optima Indeterminada
Uma solucdo 6ptima diz-se Indeterminada quando o méximo (ou minimo) da fung&o objectivo se verifica em mais
do que um ponto do convexo de solugBes. Considere-se 0 modelo de PL:

Max f(X) = 2x; + 4x,  (funcéo de lucro)
sujeitoa:  3x;  + 2% < 30
05x, + 1Ix < U

Xp, % > 0

e determine-se geometricamente a solu¢éo optima (ver a figura seguinte):

A lltima" recta de nivel
coincide com a recta de
restricdo 0.5x,+ x, = 11.

Ha dois extremos X1 e Xy onde

a solucdo é optima.

X, 0 X, 4
X, 11 X, 9| . L
Os pontos X, = = e X, = = sdo solugdes optimas com valor f(X)= 44.
Xq 8 Xg 0
X, 0 X, 0

Veja-se agora que qualquer ponto do segmento X, X, é também ponto dptimo.
Os pontos do segmento podem obter-se por combinacéo linear convexa pelo que a expresséo geral das solugdes
Optimas é:

X =, X, +a,X, coma, +a, =lea,,a, >0onde f(X")=44= Max.
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