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IV.    MÉTODO GRÁFICO 
O método gráfico só permite resolver problemas de PL de pequena dimensão (duas ou três variáveis) não tendo 
pois qualquer interesse prático.  
O método gráfico permite visualizar um conjunto de situações que facilitam a compreensão da técnica de cálculo 
do método do Simplex. 
Considere-se o seguinte modelo de PL: 
     Max f(X) = 6x1 + 8x2      ( função de lucro) 

sujeito a:  30x1 + 20x2 ≤ 300   (madeira) 

 5x1 + 10x2 ≤ 110   (horas de trabalho) 

   x1 , x2 ≥ 0 
 

O modelo na forma-padrão Simplex é: 
Max f(X) = 6x1 + 8x2 + 0F1 + 0F2 

sujeito a:  30x1 + 20x2 + F1 + 0F2 = 300 

 5x1 + 10x2 + 0F1 + F2 = 110 

 x1 , x2 ≥ 0; F1 , F2 ≥ 0     

em que F1 e F2 representam, respectivamente, a madeira e as horas de trabalho não utilizadas na produção 

(variáveis de folga). 

1. Graficar as restrições 

Considere-se a 1ª restrição 30x1 + 20x2 ≤ 300. 

Relaxando a condição da desigualdade tem-se 30x1 + 20x2 = 300 que sendo a equação de uma recta pode ser 

representada num sistema cartesiano calculando as coordenadas dos pontos A e B em que a recta intersecta os 

eixos coordenados. 
No eixo das abcissas o ponto “A” tem ordenada nula (x2 = 0) pelo que a equação se reduz a 30x1 = 300 ou seja 

x1 = 10. O ponto “A” tem pois as coordenadas (10,0). 

No eixo das ordenadas o ponto “B” tem abcissa nula (x1 = 0) pelo que a equação se reduz a 20x2 = 300 ou seja 

x2 = 15. O ponto “B” tem pois as coordenadas (0,15).  
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Na figura seguinte está graficada a recta definida pelos pontos “A” e “B”: 
 

 

x1 

X2 

Admissível 

 
B 

A 

Madeira 

D(0,0) 

Veja-se a região admissível limitada pelos 
eixos coordenados (x1 ,x2 ≥ 0) e pela 
recta de restrição (observar o ponto D). 

 

 

 

 
  

Considerando agora a 2ª restrição 5x1 + 10x2 ≤ 110 e as restrições lógicas x1,x2 ≥ 0 tem-se: 
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a. Caso Particular  

Admita-se a necessidade de graficar a restrição x1  ≤ 2x2 

Neste caso a recta x1 - 2x2 = 0 passa na origem dos eixos (0,0). Outro ponto da recta pode calcular-se 

atribuindo um valor a x1 (ou x2) e resolvendo a equação em ordem a x2 (x1). 

Considerando, por exemplo, x1 = 6 tem-se x2 = 3 

A recta é traçada pelos pontos (0,0) e (6,3) como mostra a figura seguinte: 
 

                                           

 

x1 

X2 

6

3 

 



Método Gráfico 
 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 

2. Variáveis de Folga 
A 1ª restrição na forma-padrão do Simplex é 30x1 + 20x2 + F1 = 300. 

A variável de folga F1 representa o desvio entre a madeira consumida (20x1 + 30x2) e a madeira         disponível 

(300). Para que F1 seja admissível (viável; aceitável) é necessário que o consumo de madeira tenha um dos 

seguintes valores: 
30x1 + 20x2 = 0 (não há consumo pelo que sobra F1 = 300) 

30x1 + 20x2 < 300 (consumo inferior à disponibilidade; sobra F1= 300 - 30x1 - 20x2) 

30x1 + 20x2 = 300   (consumo igual à disponibilidade; não há sobra pelo que F1  = 0 ; restrição saturada) 

Se o consumo exceder a disponibilidade tem-se 30x1 + 20x2 > 300; neste caso tem-se F1 < 0 o que não é 

admissível.  
Na figura seguinte apresentam-se as situações referidas: 

 

X1 

x2 

Convexo de 
soluções 

10

15 F1 = 0 (restrição saturada) 

F1 < 0 (não admissível) 

F1 > 0 (admissível) 

F1 =300 (admissível) 

 

3. Convexo de Soluções 
Como foi referido no capítulo anterior, o convexo de soluções pode ser fechado, ilimitado ou vazio. Nas alíneas 
seguintes apresentam-se modelos de PL associados aos três tipos referidos. 

a. Convexo Fechado 
Considere-se o modelo apresentado na secção anterior: 
Max f(X) = 6x1 + 8x2  

s.a.:  30x1 + 20x2 ≤ 300           
 5x1 + 10x2 ≤ 110           
   x1 , x2 ≥ 0  
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Veja-se na figura seguinte o convexo de soluções (fechado) e respectivos extremos: 
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soluções com 
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b. Convexo Ilimitado 
Considere-se o modelo Max f(X) = 4x1 + 3x2  

s.a.:  -3x1 + 2x2 ≤ 30          
 5x1 + 10x2 ≥ 110         
   x1 , x2 ≥ 0 

 
Veja-se na figura seguinte o convexo de soluções ilimitado e Max f(X) ilimitado. 
Notar que f(X) tem valor finito em 3 extremos do espaço de soluções. 
 

 

x 1 

x 2  

C onv ex o  de  s o luç ões  ilim itado  
M ax   f(X ) =  I lim itado  

1 0
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-1 0  

 
c. Convexo Vazio 
Considere-se o modelo: 
Max f(X) = 4x1 + 3x2  

s.a.:  3x1 + 6x2 ≤ 30          
 5x1 + 10x2 ≥ 110         
   x1 , x2 ≥ 0  
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Veja-se na figura seguinte o convexo de soluções vazio: 
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4. Extremos do Convexo de Soluções 
Considere-se o modelo padrão proposto na introdução deste capítulo. 
Atendendo às regiões do plano onde as variáveis de folga têm valores negativo (não admissível), nulo (restrição 
saturada) e positivo (recurso abundante) é possível determinar graficamente o vector Xj da solução associada a 

cada um dos extremos do convexo. 
Conhecidas as coordenadas dos extremos é possível calcular o valor da função objectivo em cada um deles e 
por comparação determinar a solução óptima. 
Na figura seguinte estão assinalados os extremos X1 , X2 , X3 e X4: 
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A solução X1 é  porque situando-se o extremo na origem dos eixos tem abcissa e ordenada 

nulas. As variáveis de folga têm valor positivo dada a posição do ponto relativamente às rectas de restrição da 
madeira e das horas. Sendo o sistema de equações da forma-padrão: 
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30x1 + 20x2 + F1 + 0 F2 = 300 
5x1 + 10x2 + 0 F1 + F2 = 110 

 
determinam-se F1 = 300 e F2 = 110.  

O valor da função objectivo é f(X1)= 6x1 + 8x2 + 0x3 + 0x4 = 0 
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A solução X2 é  porque situando-se o extremo no eixo das ordenadas tem abcissa nula e 

ordenada 11 ou seja x1 = 0 e x2 = 11. A variável de folga F2 é nula porque o extremo pertence à recta de restrição 

das horas de trabalho (verifica-se a igualdade 5x1 + 10x2 = 110). 
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Sendo o sistema de equações da forma-padrão: 

30x1 + 20x2 + F1 + 0 F2 = 300 
5x1 + 10x2 + 0 F1 + F2 = 110 

 
conhecendo os valores de x1 , x2 , x4 determina-se F1 = 80. Trata-se de um valor positivo dada a posição do 

extremo relativamente à recta de restrição da madeira. 
O valor da função objectivo é f(X2)= 6x1 + 8x2 +  0F1 +  0F2 = 88 

A solução X3 é  em que as coordenadas x1 e x2 foram obtidas graficamente ( a figura está à 

escala). 
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Estas coordenadas podem determinar-se analiticamente no sistema de equações das duas rectas: 

30x1 + 20x2 = 300 ⇒  x1 = 4 

5x1 + 10x2 = 110 ⇒  x2 = 9 
 
As variáveis de folga F1 e F2 são nulas porque o extremo pertence às rectas de restrição da madeira e das horas 

de trabalho (restrições saturadas). 
O valor da função objectivo é f(X3)= 6x1 + 8x2 + 0x3 + 0x4 = 96. 

A solução X4 é  porque situando-se este extremo no eixo das abcissas tem ordenada nula e 

abcissa 10 ou seja x1 = 10 e x2 = 0. A variável de folga F1 é nula porque o extremo pertence à recta de restrição 

da madeira (verifica-se a igualdade 30x1 + 20x2 = 300). No sistema de equações da forma-padrão conhecendo 

os valores de x1 , x2 , x3 determina-se F2 = 60. 
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O valor da função objectivo é f(X4)= 6x1 + 8x2 + 0x3 + 0x4 = 60. 
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Sabendo-se que a solução óptima é um extremo do espaço de soluções admissíveis e comparando os valores da 
função objectivo nos quatro extremos conclui-se que a solução óptima é: 
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Da leitura da solução óptima conclui-se: 

• plano óptimo de produção : x1 = 4 ;  x2 = 9 

• recursos: a madeira e as horas de trabalho são empregues na totalidade (não há sobras) 

• lucro máximo = 96 u.m. 

5. Solução Óptima 
Na secção anterior detectou-se a solução óptima após exame de todos os extremos do convexo de soluções. 
Nesta secção procederemos à determinação gráfica do ponto óptimo de forma mais rápida aplicando o conceito 
de recta de nível de um plano. 
A função objectivo é f(X) = 6x1 + 8x2 . Considerando f(X)=24 (por exemplo) define-se a equação                    6x1 + 

8x2 = 24 de uma recta de nível do plano que é lugar geométrico dos valores de f(X)=24. Esta recta intersecta o 

eixo das abcissas em x1=4 e o das ordenadas em x2=3. Qualquer ponto desta recta tem coordenadas x1 e x2 a 

que corresponde f(X)=24. 
Sabendo que em qualquer plano todas as rectas de nível são paralelas entre si é possível traçar na origem 
dos eixos a recta de nível onde f(X)=0. Deste modo fica a conhecer-se a posição relativa das rectas de nível "0" e 
"24" e assim conhece-se a direcção e sentido de aumento da função objectivo. Veja-se na figura seguinte as 
duas rectas de nível e a direcção e sentido de aumento de f(X): 
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f(X)=24 

f(X)=0 

Direcção e Sentido do aumento de f(X) 

Notar a perpendicularidade entre as rectas 
de nível de f(X) e o gradiente de f(X) 

x1=4 ; x2 =9. Ponto óptimo 

 
Resta agora identificar a última das rectas de nível que se pode traçar contendo um extremo do convexo de 
soluções. Na figura conclui-se que o ponto de coordenadas x1=4 , x2=9 é o extremo óptimo.  

Porque é único a Solução Óptima é Única. 
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6. Solução Óptima Indeterminada 
Uma solução óptima diz-se Indeterminada quando o máximo (ou mínimo) da função objectivo se verifica em mais 
do que um ponto do convexo de soluções. Considere-se o modelo de PL: 
Max f(X) = 2x1 + 4x2      ( função de lucro) 

sujeito a:  3x1 + 2x2 ≤ 30       

 0.5x1 + 1x2 ≤ 11       

   x1 , x2 ≥ 0  
e determine-se geometricamente a solução óptima (ver a figura seguinte): 
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A "última" recta de nível 
coincide com a recta de 
restrição 0.5x1+ x2 = 11. X1 

X2 
Há dois extremos X1 e X2 onde 
a solução é óptima. 

Direcção e Sentido do aumento de f(X)

 

 

 
  

 

Os pontos  e  são soluções óptimas com valor f(X)= 44. 
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Veja-se agora que qualquer ponto do segmento 21 XX  é também ponto óptimo. 

Os pontos do segmento podem obter-se por combinação linear convexa pelo que a expressão geral das soluções 
óptimas é: 

 onde . 0,1 21212211
* ≥=++= αααααα ecomXXX MaxXf ⇒= 44)( *
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