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I. Programação Linear (PL) 

1. Introdução 
A Programação Linear é, no campo mais vasto da Programação Matemática, uma das variantes de aplicação 
generalizada em apoio da Decisão. 
O termo "Programação" deve entender-se como "Planeamento" e a qualificação "Linear" deixa antever que 
as relações matemáticas utilizadas são funções lineares. 
Tendo em atenção que se Decide para atingir um Objectivo e que tal implica a aplicação óptima dos recursos 

disponíveis para actividades alternativas analise-se o exemplo de uma empresa que pretende Optimizar a 
produção mensal de dois bens “A“ e “B” na situação seguinte: 

Recursos críticos disponíveis: Madeira 300 metros 

 Horas de trabalho 110 horas 
 

  Madeira (metros) Horas de Trabalho (h) 

Consumos unitários previstos: Produto A 30 5 

 Produto B 20 10 
 

 Produto A Produto B 

Lucro unitário da venda (€) 6 8 
 

Nesta situação é necessário atender a que: 

• O Objectivo a alcançar é Maximizar o lucro total da venda da produção; 

• os níveis de produção estão superiormente limitados pelos 300 metros de madeira e 110 horas de 
trabalho disponíveis; 

• são possíveis vários níveis de produção (exº: 1 unidade de A e 2 unidades de B etc.); 

• do leque dos possíveis níveis de produção é necessário conhecer qual ou quais podem classificar-
se de óptimos à luz do Objectivo a atingir; 

Como programar matematicamente esta situação (Modelo Matemático Linear) para obter informação 
quantificada para o Decisor ? 
A formalização matemática é um trabalho laborioso tanto mais difícil quanto mais complexa é a situação de 
partida, as condicionantes impostas e o objectivo a alcançar, pelo que requer conhecimento e habilidade. 
Não há regras estabelecidas mas se na situação proposta exercitarmos a nossa curiosidade somos 
forçosamente conduzidos a interrogarmo-nos sucessivamente como a seguir se expõe: 
 
Primeira pergunta elementar:  Quantas unidades de A e B podem produzir-se nestas condições ? 

Resposta matemática: recorrer a duas Variáveis de Decisão Não Negativas:  
x1 = número de unidades de A a produzir 

x2 = número de unidades de B a produzir  
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Segunda pergunta elementar:  Que valores se podem admitir para as variáveis de Decisão  x1 e x2 ?   

Resposta matemática: 
- em x1 unidades de A consomem-se 30x1 metros de madeira; 

- em x2 unidades de B consomem-se 20x2 metros de madeira; 

• não podendo ultrapassar os 300 metros de madeira disponíveis então 30x1 + 20x2 ≤  300 

- em x1 unidades de A consomem-se 5x1 horas de trabalho; 

- em x2 unidades de B consomem-se 10x2 horas de trabalho; 

• não podendo ultrapassar as 110 horas de trabalho disponíveis então 5x1 + 10x2 ≤ 110 

• dada a natureza do problema os valores de x1 e x2 devem ser não negativos  

Terceira pergunta elementar:  Qual o Objectivo a atingir com a produção de A e B ?  

Resposta matemática: 
- o lucro da venda de 1 unidade de A é de 6 € pelo que para x1 unidades de A é de 6x1 euros 

- o lucro da venda de 1 unidades de B é de 8 € pelo que para x2 unidades de B é de 8x2 euros 

• o lucro total da venda de x1 unidades de A e de x2  unidades de B  é de 6x1 +  8x2  

• o Objectivo é conhecer o maior valor que é possível atingir o lucro total  “6x1 + 8x2” ou seja é 

necessário calcular o extremo superior (condicionado) de uma função linear f(x1 , x2 ) = 6x1 + 8x2 

 
Das respostas ensaiadas, obtém-se um Modelo Matemático que pode sistematizar-se do seguinte modo: 
OBJECTIVO : Maximizar o Lucro Total da Venda 

Max f(x1 , x2 ) = 6x1 + 8x2  sendo f(x1 , x2 ) a Função Objectivo do modelo 

RESTRIÇÕES (CONDICIONAMENTOS) TÉCNICAS 

Madeira :  30x1 + 20x2  ≤  300 

Horas de trabalho : 5x1 + 10x2  ≤  110 

RESTRIÇÕES (CONDICIONAMENTOS) LÓGICAS 

x1 , x2 ≥ 0  

2. Geometria do modelo de Programação Linear 
Considere-se um sistema de eixos cartesianos com o eixo das abcissas associado a x1 (produção de A) e o 

eixo das ordenadas associado a x2 (produção de B). 

Relaxando (enfraquecendo) a condição de desigualdade das restrições técnicas estas passam a ser 
equações que definem rectas. Cada uma destas rectas divide o espaço plano em duas regiões disjuntas 
verificando-se a relação de desigualdade apenas em pontos de uma das regiões (sub espaços). 
Procedendo deste modo é possível, por intersecção, definir o conjunto de pontos-solução do problema dado 
e nestes determinar aquele ou aqueles onde a função objectivo tem o seu extremo. 



Programação Linear – Introdução 

 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

a. Traçado das Rectas e Identificação do Espaço de Soluções admissíveis 
Recta associada a 30x1 + 20x2 = 300 : 

• para x2 = 0 intersecta o eixo das abcissas em x1 = 10  

• para x1 = 0 intersecta o eixo das ordenadas em x2 = 15 

Recta associada a 5x1 + 10x2 = 110 : 

• para x2 = 0 intersecta o eixo das abcissas em x1 = 22 

• para x1 = 0 intersecta o eixo das ordenadas em x2 = 11 

Na figura seguinte apresenta-se o sistema de eixos e as duas rectas: 

 

Atendendo à condição de não negatividade ( x1 , x2 ≥ 0 ) só os pontos do 1º quadrante são solução 

admissível. 
Atendendo a que o ponto origem (0 , 0) satisfaz a relação de desigualdade em cada uma das restrições 
técnicas, fica explícita a informação necessária para identificar o espaço das soluções admissíveis do 
problema.  
Na figura seguinte apresenta-se o espaço de solução

Madeira ⇔ 30x1 + 20x2 = 300 

Horas ⇔ 5x1 + 10x2 = 110

x2 

15 

5 

10  

x1 10 201550 

 agora identificado: 
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Madeira ⇔ 30x1 + 20x2 = 300 

Horas ⇔ 5x1 + 10x2 = 110 

x2 

x1 

15 

5 

10

10 

201550 

  

Origem ( 0 , 0 ) é admissível 

x1 ≥ 0

 x2 ≥ 0

 Espaço de soluções admissíveis



Programação Linear – Introdução 

 

  INVESTIGAÇÃO OPERACIONAL  (MS – edição de 2006) 
 

Qualquer dos pontos pertencentes ao espaço assinalado na figura satisfaz quer as restrições técnicas quer 

as restrições lógicas sendo agora necessário identificar em qual deles a função objectivo atinge o seu valor 
máximo. 
b. Determinação do Ponto Óptimo  

O lugar geométrico dos valores possíveis para a função objectivo é o plano apresentado na figura 
seguinte: 

              

0

10

15 0

5

10

15

0

50

100

150

0

5

10

15

x2

x1

f(x1 , x2)

 
Traçando planos paralelos ao plano horizontal, as intersecções com o plano da figura são rectas 
paralelas (rectas de nível do plano) onde a função tem o mesmo valor (rectas de isolucro). 
Se de um ponto de vista acima do plano olharmos para este numa direcção perpendicular ao plano 
horizontal, a imagem que temos é de um conjunto de rectas paralelas (rectas de nível do plano) como 
mostra a figura seguinte: 
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Tem-se assim que, no plano horizontal, podem graficar-se as rectas de isolucro. 
De facto se, por exemplo, considerarmos que: 

• a função tem valor 48, a equação desta recta de nível é 6x1 +  8x2 = 48; 

• a função tem valor 24, a equação desta recta de nível é 6x1 +  8x2 = 24; 

Na figura seguinte, tem-se o espaço de solução e as duas rectas de nível agora definidas: 
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Direcção e Sentido do maior 
aumento da fun 

 
 
 
 
 
 
Na figura foi também traçada a recta de nível zero pois passa na origem (6x1 + 8x2 = 0 ) e é paralela às 

rectas anteriormente definidas (família de rectas de nível do plano). 
Da análise da figura, verifica-se que o valor da função é tanto maior quanto mais nos afastamos da origem 
pelo que a última das rectas de nível que se pode traçar contendo um ponto do espaço de solução 
admissível é a correspondente ao máximo da função. Aquele ponto denomina-se Ponto Óptimo ou Solução 
Óptima. 
Notar que se a esta última recta pertencer mais do que um ponto daquele espaço, haverá várias soluções 
óptimas alternativas dizendo-se que a solução óptima é Indeterminada ou Múltipla. 
A figura seguinte mostra que o ponto de intersecção das rectas 30x1 + 20x2 = 300 e 5x1 + 10x2 = 110 é o 

Ponto Óptimo com coordenadas x1 = 4 e x2 = 9 sendo o Máximo da função igual a 6(4) + 8(9) = 96 €: 
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O Plano Óptimo de Produção é portanto de 4 unidades de A e 9 unidades de B a que está associado o lucro 
máximo de 96 euros. 
Veja-se agora outro método para identificação geométrica do ponto óptimo. 
Derivando f(x1 , x2 ) = 6x1 + 8x2 em ordem a cada uma das variáveis obtêm-se as taxas de variação da 

função em ordem à variação marginal de cada uma das variáveis. 

Por definição 8
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∂  cujo significado é o seguinte (notar que estamos em espaço linear): 

• se x1 tem um acréscimo "k1" , mantendo-se x2 constante, a função aumenta 6 vezes "k1" euros 

• se x2 tem um acréscimo "k2" , mantendo-se x1 constante, a função aumenta 8 vezes "k2" euros 

O conjunto das derivadas parciais da função f(x1,x2) constitui o GRADIENTE da função (vector):  
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Em qualquer ponto P(x1 , x2 ) o Gradiente é perpendicular ao lugar geométrico dos pontos do espaço onde a 

função tem o mesmo valor que tem em P, ou seja, o Gradiente da função é perpendicular às rectas de 
nível da função e indica a direcção e sentido em que a função aumenta mais rapidamente. Pode 
portanto utilizar-se para identificar o ponto óptimo no espaço de solução admissível. 
Retomando o exemplo precedente, no sistema de eixos grafica-se o Gradiente da função objectivo e traçam-
se sucessivas rectas de nível enquanto as mesmas contiverem, pelo menos, um ponto do conjunto de 
soluções admissíveis. 
A última recta que se pode graficar indica o ponto ou pontos em que a função atinge o seu máximo. 
Na figura seguinte pode ver-se o Espaço de solução admissível, o Gradiente da função e as Rectas de nível 
na origem dos eixos (função com valor nulo) e no ponto óptimo (função com valor 96): 
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Nota: Se o objectivo é Minimizar a função objectivo o sentido em que a função decresce é oposto ao 

indicado pelo gradiente. 
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3. Formulação Matemática do Modelo de PL 
Um modelo de Programação Linear engloba: 

• "n" variáveis reais x1 , x2 , ... , xn denominadas Variáveis de Decisão (principais ; controláveis); 

• "m" condições lineares (m<n) denominadas Restrições Técnicas (funcionais) relacionando as 
Variáveis de Decisão de um dos seguintes modos: 

a1 x1 + a2 x2 + ... + an xn 
....................................................... 
....................................................... 
....................................................... 

am x1 + am x2 + ... + am xn 

≤  
ou 
=  
ou 
 ≥  

b1 
..... 
..... 
..... 

bm 

 
A matriz de coeficientes das variáveis de decisão denomina-se Matriz Técnica (tecnológica) e o 
vector-coluna dos termos independentes denomina-se Vector dos Termos Independentes 
(recursos). 

• "n" restrições, estabelecendo o conjunto de valores admissíveis (viáveis; aceitáveis) para cada uma 

das variáveis de decisão, denominadas Restrições Lógicas ( xj ≤ 0 ; xj ≥ 0 ; xj livre ; xj binária;          

xj inteira são exemplos de restrições lógicas); 

• uma Função Linear das variáveis de decisão f(X) = c1 x1 + c2 x2 + ... + cn xn denominada Função 

Objectivo (expressa um critério pois permite hierarquizar a importância relativa de cada uma das 
soluções do problema) de que se pretende o Máximo ou Mínimo.  
Os coeficientes c1 , c2 , ..., cn das variáveis de decisão denominam-se Coeficientes da função 

Objectivo; 
 

Nos modelos de Maximização as restrições técnicas Típicas são do tipo " ≤  "  

Nos modelos de Minimização as restrições técnicas Típicas são do tipo " ≥ "  

 

A restrição lógica Típica é a condição de não negatividade (xj ≥ 0). 

(Típica, no sentido de mais frequente) 
 
Nota: 

O estudo da programação matemática linear deve ser efectuado recorrendo ao software do autor 

especificamente desenhado para apoio pedagógico. 
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